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Abstract. Large scale microscopic (i.e. vehicle-based) tra�c simula-

tions pose high demands on computational speed in at least two appli-

cation areas: (i) real-time tra�c forecasting, and (ii) long-term planning

applications (where repeated \looping" between the microsimulation and

the simulated planning of individual person's behavior is necessary). As

a rough number, a real-time simulation of an area such as Los Ange-

les (ca. 1 million travellers) will need a computational speed of much

higher than 1 million \particle" (= vehicle) updates per second. This

paper reviews how this problem is approached in di�erent projects and

how these approaches are dependent both on the speci�c questions and

on the prospective user community. The approaches reach from highly

parallel and vectorizable, single-bit implementations on parallel super-

computers for Statistical Physics questions, via more realistic implemen-

tations on coupled workstations, to more complicated driving dynamics

implemented again on parallel supercomputers.

1 Introduction

Nobody likes tra�c jams. Yet, they are only the most visible feature among a

variety of related problems: Subways which fail to go where or when you need

them; pollution of inner cities; etc. Many of these are results of poorly designed

transportation systems. However, what is a good design? In our complex world,

such a question is not easy to answer. Addition of new streets may increase con-

gestion by concentrating formerly spread-out tra�c onto one through route [1];

introduction of a transit system may increase pollution by making the car which

previously was taken to work now available for short trips all with a cold en-

gine [2]; a transportation infrastructure investment payed for by a certain group

may actually turn out to bene�t a completely di�erent sub-population (win-

ner/looser analysis); a new major arterial meant to relieve congestion may at-

tract new developments along this new arterial, making congestion worse in the

long run (induced demand).

There is more and more agreement between transportation professionals that

a useful planning tool for such situations is a transportation microsimulation. In

such a microsimulation, each traveler is represented as an individual object in the

simulation. That makes it straightforward to separate out winners and losers;

to \look" for vehicles with cold engines causing excessive pollution; etc. Yet,
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Fig. 1. The TRANSIMS design.

a problem is how do you \drive" such a microsimulation, i.e., how do travelers

decide their next move at intersections or at transfer points (train stations etc.)?

The traditional answer to this questions has been \turn counts", i.e. numbers

at each intersection which tell you which percentage of vehicles makes left or

right turns, respectively. It is fairly clear that this will not work as soon as the

infrastructure changes a�ects people's behavior; e.g. a left turn which has been

used heavily before the change is now no longer used much, rendering the turn

counts for this particular intersection irrelevant.

It is also fairly obvious that random selection (annealed randomness) often

favored by (statistical) physicists has a good chance of not being very helpful in

the very non-homogeneous structure of transportation systems.

2 TRANSIMS

It thus seems that the only answer is to drive the traveler objects in the simula-

tion by something which emulates real-world behavior, i.e. by intentions. This,

and its realization into a practical computer code, is the core of the TRANSIMS

project [3, 4, 5, 6, 7] (see also [8]).

With intentions, one is very soon faced with a consistency problem. Real peo-

ple presumably plan their trip before they leave their current location (meaning

one needs simulated planning), but are open to deviate from the plans for exam-

ple when the conditions they encounter are much di�erent from what they ex-

pected (meaning one needs on-trip planning). Furthermore, the intentions some-

how have to be generated in the computer in the �rst place.

The TRANSIMS approach to this problem is to parcel out the di�erent parts

of this process (see Fig. 1):

{ Population and activities generation: Stochastically generate a population of

individuals for a given geographic area such that the demographics of this

generated population matches demographic data. Then, for each individual,

generate activities such as work, shopping, social activities, which that indi-

vidual wants to perform under some scheduling restrictions (e.g. go to work

at 9 am; go shopping once a week; etc.).
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Fig. 2. Visualization of feedback cycles between activity generator, planner, and mi-

crosimulation.

{ Trip chaining, modal choice and route planning: The activities are combined

into trip chains, and the trip is routed on the transportation system, includ-

ing modal choice

{ Microsimulation: The trip plans are executed in a detailed microsimulation

of the transportation system

{ Analysis: The output of the tra�c microsimulation is input into analysis

modules, such as air quality, or measures of e�ciency analysis

Despite the separation of the modules, it is clear that there are backward causal-

ities. For example, if the microsimulation displays congestion, people will react

by choosing di�erent routes. If that does not help, they will re-schedule their

activities. If nothing helps, they will maybe relocate to a more convenient loca-

tion.

This backwards causality is what causes one of the computational challenges.

In order to sort out the causal interdependencies, it is necessary to run the

microsimulation which results in a new cost function (travel-time) on the in-

frastructure, then to re-plan according this new cost function, then to run the

microsimulation again, etc., until some relaxation criterion is ful�lled. After that,

one probably has to re-run the activities generation, adapting activities to what

can actually be achieved in the given transportation system. This triggers in

return a completely new relaxation cycle between route planner and microsimu-

lation, etc. (see Fig. 2). In consequence, for certain problems the microsimulation

may have to be run hundreds of times, thus demanding ultra-high computing

speeds.



3 Other computational challenges

There are at least two other computational challenges in the transportation

simulation area: systematic analysis, and real time forecasting.

3.1 Simulation as a dynamical system

Reasonable tra�c simulations will be Monte Carlo simulations, meaning that

di�erent random seeds will produce di�erent system trajectories.

4

That means

that only ensembles of multiple simulations actually produce meaningful results.

The extent of robustness of the results has to be analyzed; if simulations turn

out to be consistently non-robust in certain aspects, then only the distributions

of outcomes may be seen as the result. That is, many simulation cycles will have

to be run both to �nd robust and non-robust elements of the simulation and to

generate the distributions for the non-robust outcomes.

3.2 Real time forecasting

Above, transportation simulation has been described in the context of a long-

term planning problem. Having a twenty years planning horizon, it may be in-

convenient but not impossible if the generation of meaningful simulation results

for, say, a representative day takes several weeks. Yet, there are other problems

such as traveler information (sometimes called ATIS { Advanced Traveler Infor-

mation Systems) or tra�c management (ATMS { Advanced Tra�c Management

Systems) where at least some of the questions involve real time forecasting. That

means that the forecasting procedure has to run faster than real time, i.e. the

forecast better be available from the computer before the situation is there in

reality.

4 The TRANSIMS microsimulation

Transportation simulation is, as outlined above, an intricate process involving

a multitude of di�erent scales, ranging from the representation of the move-

ments of individual travelers to the representation of planning decisions on a

weekly scale or more. It is clear from the above remarks that the transporta-

tion microsimulation poses one of the major challenges here, both because of

the enormous scale of the problem (large regional areas often have 10 million or

more travelers simultaneously on route) and because it is in the innermost loop of

the relaxation as described above. Yet, also the other modules pose considerable

computational loads | for example, generating the 10 million trips which are

necessary for a 24 hour run of the Dallas/Fort Worth area takes about 24 hours

4

Arguably, a deterministically chaotic simulation would do the same when started

from slightly varied initial conditions.



on a workstation, and produces several Gigabytes of output. However, reason-

ably systematic results exist so far only for vehicular tra�c microsimulations,

which we will concentrate on for the remainder of this paper.

A useful model for tra�c microsimulation has to ful�ll several fairly obvious

criteria: (i) It has to resolve at least individual cars, so that individual plan

following can be implemented. (ii) It has to generate reasonable tra�c dynamics.

(iii) It has to be computationally fast.

TRANSIMS uses a cellular automaton (CA) approach for the tra�c mi-

crosimulation.The approach is microscopic, it generates realistic tra�c dynamics

including the characteristic variance structure of certain tra�c measurements,

and it is computationally fast.

For the CA approach, the road is separated into cells which are either empty,

or occupied by exactly one car. The size of the cell, l, is given by the inverse

density of a tra�c jam: l = 1=�

jam

. A good approximation is l = 7:5 m. Cars

move by jumping from one cell to another. Before they move, they adjust their

velocity according to three simple rules: (a) Accelerate if you can up to some

maximum velocity v

max

. (b) Decelerate if you must (i.e. if another vehicle is

too close ahead of you). (c) With a certain probability, be slower than that

(randomization). See, e.g., [9, 10, 11] for more information. Lane changing and

other features are implemented in the same simple, straightforward way, see,

e.g., [12, 13, 14].

An update of the system consists of several completely parallel sub-steps (lane

changing, intersection dynamics, velocity update and movement). This makes a

parallel implementation straightforward: As long as boundary information is

exchanged after each sub-step, all sub-steps can be done concurrently.

As a result, the CA approach is computationally very e�cient: Due to the

simpli�ed dynamics, it already fast on desktop computers, and due to the parallel

update, it can be implemented e�ciently on parallel computers, yielding linear

speed-ups for large enough system sizes.

This approach has been extensively tested on many computer architectures.

A simple single-lane circle was implemented using a wide variety of computer

architectures (coupled workstations, parallel and/or vectorizing supercomputers)

using di�erent algorithms (list-based, bit-coded, etc.). After settling down on a

certain implementation technique targeted for certain computer architectures,

large realistic road networks were implemented or are under implementation.

5 Implementations of the CA tra�c model

For the practical coding, we considered three di�erent approaches: site oriented,

particle (= vehicle) oriented, and an intermediate scheme. Site oriented di-

rectly implements the CA: A street is represented by an array v

j

; j = 1 : : :L

(L = system size) of integers with values between �1 and v

max

. �1 means that

there is no vehicle at this site, whereas the other values denote a vehicle and

its velocity. In contrast, vehicle oriented means that two lists (x

i

)

i=1;:::;N

and

(v

i

)

i=1;:::;N

contain position x

i

and velocity v

i

of each vehicle i (i = 1; : : : ; N ).



This is similar to a molecular dynamics algorithm [15], except that vehicles are

constrained to integer positions and velocities.

Obviously, the vehicle-oriented approach will always be faster than the site-

oriented one for su�ciently low vehicle densities. Yet, for the site-oriented ap-

proach single-bit coding (see, e.g., [16]) is possible. This means that the model

is formulated in logical variables, which may be stored bitwise into computer

words. Logical operations on computer words treat all bits of the word simulta-

neously, giving a theoretical speedup of b, where b is the number of bits per word

(usually 32 or 64). However, the practical gain for tra�c simulations on a work-

station is much lower because the bit-oriented approach cannot take advantage

of the fact that only a fraction of all sites is occupied by a vehicle. Neverthe-

less, we found that, on a workstation, the single-bit algorithm is faster than the

vehicle-oriented one for densities above 0:05 (for v

max

= 5). In addition, the

single-bit code runs very e�ciently on a Thinking Machines CM-5 using data

parallel CM-Fortran and on a NEC-SX/3 traditional vector computer.

Once passing of vehicles is allowed (multi-lane tra�c), single-bit coding be-

comes tiresome. Moreover, for realistic simulations, one needs access to more

vehicle information, making a pointer to further vehicle data necessary. Since

a pointer typically is a 32-bit number which would have to be moved along in

memory with the vehicle in the space-based single-bit approach, single-bit coding

is no longer e�cient.

With respect to the vehicle oriented approach, the problem is the same as

in parallel Molecular Dynamics approaches: How to �nd the neighbors for inter-

action, for example for intersection dynamics, lane changing, or car following.

Solutions to this are possible but elaborate, and the expected computational

speed gain (not more than a factor of about four, see Table 1) did not warrant

the additional programming complexity at the current state of the project.

These observations led to a third, intermediate approach. As in the site ori-

ented approach, each site is in one of (v

max

+ 2) states, but for the update only

the relevant sites are considered. It turns out (see below) that on parallel but not

vectorizing computers this algorithm is about as fast as the single-bit version.

In all cases, the parallelization was done geometrically, i.e. dividing the one-

dimensional system of size L into p pieces of length l = L=p, where p is the

number of CPNs (computational nodes). For single-bit coding this is a bit tricky:

The standard trick of having the parallel direction(s) di�erent from the bit-

coding direction does not work any longer in one dimension. More details can

be found in [17].

6 Computational speeds on di�erent supercomputers

Table 1 gives an overview of the computational speeds on selected computers.

When comparing performance data, it is necessary to give the size of the sim-

ulated system. This becomes imperative for parallel computers, since too small

systems perform poorly due to the communication overhead. All values of Ta-

ble 1 have been obtained by simulations of systems of size L = 10; 000 single-



lane km (1; 333; 333 sites) with an average tra�c density of 13:4 vehicles/km

(0.1 veh/site, 134; 000 vehicles in the whole system). This is a system size which

is relevant for applications. Moreover, it is a system size small enough to still �t

into memory of our single node machines, but which is at the same time large

enough to run relatively e�cient on our parallel machines. Quantitatively, this

means that both the GCel and the CM-5 were operating at 40% e�ciency. A

larger system size would be even more e�cient.

References in the literature often give a \real time limit" as measure of their

model's performance, which then is the extrapolated system size (or number of

vehicles) where simulation is as fast as reality. We found these values practically

useless in the area of parallel computing, except when given in conjunction with

the system size which has actually been simulated.

In consequence and in order to avoid confusion, our primary table entries

are the CPU times we needed on the di�erent machines in order to simulate

the system as de�ned above. For convenience, we also calculated the real time

limits in km and in vehicle sec/sec from these values. But it should be kept in

mind that, if one really simulates system sizes near 1 million km on the parallel

machines, one will �nd much better real time limits for these system sizes (e.g.

2 million km instead of 900,000 km on the GCel).

Noteworthy features of the table are: (i) The bit-coded CA-algorithm is far

superior over the \intermediate" one on the vectorizing machines (NEC SX-3/11

and CM-5), slightly faster on the workstation-based architectures, and slightly

slower on the massively parallel Parsytec GCel-3. (ii) All algorithms can take

good advantage of the parallelism. (iii) Already on a relatively modest machine

such as an Intel Paragon with 64 nodes, our real time limit including network

handling overhead (intersections etc.) is 280 000 single lane kilometers. For com-

parison, the freeway network of Germany is about 60000 single lane kilometers

long (12000 km � 2 directions � 2.5 lanes). We are therefore con�dent to reach,

for a realistic network setup, real time limits of 1,700,000 single lane kilometers

(23; 000; 000 veh sec/sec) on 512 nodes of a CM-5, even without using the vector

nodes.

Although tra�c dynamics is quite di�erent, our computational speeds are

comparable to those of Ising models: On the NEC-SX3/11, 0:0025 sec for

10000 sites correspond to 533 MUPS (Mega-Updates Per Second), which may be

compared to 1050 MUPS of a very fast implementation of the (two-dimensional)

Ising model on the same computer [18].

7 Di�erent system sizes

The above observations were made for one �xed system size (10 000 km). If one

wants to make predictions for di�erent system or computer sizes, one needs more

results. This section shows results of systematic measurements.

Fig. 3 gives, for di�erent computers, the best computational speed as a func-

tion of system size in terms of the \real to simulation time ratio", which is the

factor the computer model runs faster than the simulated reality. It is obvious



s.bit (F77) particle (F77) intermed. (C) netw. (C)

Sparc10 0.33 sec 0.15 0.71 sec 1.14 sec

30 000 km 66 000 km 14 000 km 8800 km

0.4 e 6 veh 0.89 e 6 veh 0.19 e 6 veh 0.12 e 6 veh

PVM 0.07 sec 0.15 sec

(5� Sp10) 140 000 km 65 000 km

1.9 e 6 veh 0.87 e 6 veh

SX-3/11

(1)

0.0025 sec 0.48 sec

1 CPN 4000 000 km 21 000 km

53 e 6 veh 0.28 e 6 veh

GCel-3 0.013 sec 0.0065 sec 0.011 sec

1024 CPNs 750 000 km 1550 000 km 900 000 km

10 e 6 veh 20.7 e 6 veh 12 e 6 veh

iPSC 0.016 sec 0.038 sec

32 CPNs 630 000 km 260 000 km

8 e 6 veh 3.5 e 6 veh

Paragon 0.034 sec

64 CPNs 290 000 km

3.9 e 6 veh

CM-5

(1)

0.0077 sec

(2)

0.045 sec

(3)

32 CPNs 1 300 300 km 220 000 km

17 e 6 veh 2.9 e 6 veh

CM-5

(1)

1024 CPNs [> 1.7 e 6 km]

[> 23 e 6 veh]

(1)

CPN(s) has/have vector units (SIMD instruction set)

(2)

using data parallel Fortran (CMF)

(3)

using message passing (CMMD)

Table 1. Computing speed of di�erent algorithms on di�erent computer architectures.

\s(ingle) bit", \particle", \intermed(iate)", and \netw(ork)" mean the corresponding

algorithms described in the text. For each machine and algorithm, the �rst table entry

gives the time each computer needed to simulate a system of size 10; 000 km. From

this �gure, we derive the other two entries: the real time limits in km and in vehicle

sec/sec.
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Fig. 3. Comparison between real time and computer time for di�erent system sizes,

i.e. the factor r the computer model runs faster than reality. The system sizes where

the curves cross r = 1 are the so-called real time limits.

from this �gure that for fast simulations of small systems single CPN machines

are far better than parallel machines. For example, a system of roads of 100 km

could be simulated in 1=40000 of the real time on the NEC vector computer. For

slower simulations of large systems, parallel machines become equivalent or even

better due to their larger overall memory. Our largest system (on the Parsytec

GC-el/3 with 1024 CPNs) had a length of nearly 10 million km single-lane road,

which would correspond to 1.6 million km of freeway with six lanes (three in each

direction). In view of practical applications, this result indicates that memory

consumption is not a critical issue for microscopic tra�c simulations with our

approach.

An e�cient system size is reached when doubling of the system size results

in an approximate doubling of the computer time, which is visible as a slope

of �1 in the double-logarithmic plot of Fig. 3. For some computer architectures

one needs quite large systems in order to make e�cient use of the computer. In

these cases, adding more processing CPNs to the parallel machine only allows

processing of larger systems in the same time (scale-up), but not the same system

size in shorter time (i.e., no speed-up).

The performance gain of the single-bit algorithm against the intermediate

one can be seen in Fig. 4. The gain is relatively low (between a factor of 1 and

4) on workstation-like CPNs (SUN Sparc 10, Intel iPSC/860) and is completely
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lost (between 0.4 and 2) on the massively parallel Parsytec GCel{3 with 1024

CPNs. On the other hand, this gain is considerable on the vectorizing machines:

We found a factor of about 200 on the traditional vector computer NEC{SX3/11

and still a factor of more than 10 on the CM{5 (the latter only for large system

sizes).

In order to make reliable predictions on scaling behavior, some theory is

helpful. Results on a model for the parallel time complexity of the intermediate

algorithm can be found in [17].

8 General observations for the implementation of road

networks on parallel computers

After the tests with the single-lane model in simple geometries, the CA was

enhanced to include multi-lane tra�c and to handle complex networks. As men-

tioned in previous sections, tra�c simulations have to be both computationally

fast (e.g. at least real-time) and cover a large street network. Due to the limi-

tations in performance of a single workstation, large-scale simulations have to

be moved to parallel computers, as soon as the street network size exceeds a



certain limit. The straight-forward approach to parallelization is to perform a

domain decomposition of the street-network, assigning each sub-network to a

computational node (CPN) of the parallel machine. The three most important

issues are then: (1) how to cut the network, (2) what state information to ex-

change along the CPN boundaries, and (3) how to control parallel execution, in

order to guarantee a consistent CA update. But, before we address these issues,

let us summarize in what aspects the network tra�c simulation di�ers from the

original simple geometry.

Network Elements Looking at a graph as the representation of a street net-

work, it is fairly easy to associate edges (streets) as multi-lane CA segment

and nodes (intersections) as points where vehicles are transferred from in-

coming to outgoing segments in an orderly fashion. The actual implemen-

tation turns out to be more tedious because on the one hand the e�ort to

administer a network of edges and nodes with individual characteristics is

enormous compared to the simple core implementation of the CA. On the

other hand, each intersection represents a disruption of the CA grid which is

usually regarded as either in�nite (periodic boundary conditions) or at least

large compared to the boundary length. The algorithms connecting CA seg-

ments have to be designed carefully to deliver satisfactory tra�c behavior

without producing artifacts.

Complex Vehicles and Route-Plans In contrast to earlier investigations of

circular tra�c in which vehicles were regarded as completely equivalent,

each vehicle in the TRANSIMS tra�c simulation has an individual route-

plan guiding it from its source to its destination, making it unique from any

other vehicle in the system. Moreover, due to the requirements regarding the

statistical properties which have to be retrieved from the simulation, vehicles

also may have to have local memory to store history information of their trips

(travel time, e.g. engine temperature, fuel consumption). Therefore, the data

which is associated with a vehicle entity is increased many-fold with respect

to the few bits (usually coded in on integer) of the original model.

Input/Output A typical setup of CA tra�c in a circle looked like this: Gener-

ate vehicles with a certain density homogeneously distributed in the system.

Start the simulation and let the transients die out. Then, gather aggregated

statistics about average velocity and average 
ux until the run terminates.

It should be obvious to the reader that the amount of data produced by

the simulation is negligible (maybe a few hundred values) and the input is

restricted to a few parameters such as overall density.

The situation looks considerably di�erent in a realistic network simulation:

During the preparation phase, each intersection and each segment of the

network has to retrieve certain characteristics (e.g. signal phasing, turning

prohibitions, length, speed limit, number of lanes) froma data base. After the

simulation has started, each route-plan has to be transferred to the source of

the route resulting in the instantiating of a vehicle exactly at the departure

time-step. As soon as a vehicle reaches its destination, trip data may have

to be stored, before the vehicle instance is destroyed. For the Dallas/Fort-



Worth area the number of trips per day can be as high as 3,000,000 resulting

in route-plan input �les of about 3 Gigabyte.

Most of the questions concerning e�cient input/output of the tra�c simu-

lation have not been answered yet. The task becomes all the more di�cult,

since the simulation is only one part in a series of applications (router, tra�c

simulation, environmental simulation) exchanging large amounts of data. A

generalized concept of parallelization has to integrate all these steps of data

processing, instead of regarding them stand-alone applications, unnecessar-

ily multiplying data volumes. Insights into these issues will be published in

future papers.

8.1 Domain Decomposition

In our opinion, domain decomposition is the most natural approach to paral-

lelization due to the underlying (almost) planar street network. As long as no

re-planning (rerouting) is done on-line, the interaction-range of vehicles is re-

stricted to a couple of hundred meters in direction of their travel and even less

in the reverse direction. Therefore, for a consistent CA update, only state infor-

mation of immediate neighborhood is necessary, reducing the boundary area to

narrow strip along the borders between neighboring CPN. It should be obvious

that the domain decomposition of the network has to be done in such way as to

generate the smallest possible boundary area. An easy to implement recursive

orthogonal bisection has proven to be (a) computationally e�cient, (b) capable

to produce satisfactory results, and (c) accessible to a analytical heuristic de-

scription, which can be used to predict the parallel e�ciency. In our case, the

criterion for bisection is de�ned by load-estimates of the tra�c network nodes

(e.g. intersection), each of which is computed as the sum Euclidean lengths of

all incident edges. This is based upon the assumption that the execution time of

the tra�c CA strongly depends on the grid size and not so much on the actual

vehicle density.

Due the complexity of the intersections, splitting the network at the center of

street segments (with one half of the segment updated by either CPN) turned out

to be easier than splitting at intersections between nodes and incident segments.

The boundary size is then proportional to the total number of segments that had

to be split to form the sub-networks. See Figure 5 for an example using 7 CPNs.

Figure 6 depicts the number of inter-CPN segments returned by the recursive

orthogonal bisection method and a heuristic formula [19, 20] for three di�erent

maps. The similarity between plots and the data points is striking, especially

if one considers the di�erent nature of the street networks: (a) the arterials of

the Dallas / Fort Worth area, (b) an excerpt of the former, also including local

streets, and (c) the Autobahn network of the Federal Republic of Germany.

8.2 Simulation Timing and Boundary Exchange

Due to de�nition of the CA rule-set, boundary information has to be exchanged

between neighboring CPNs before the CA rules can be applied, resulting in



Fig. 5. Domain decomposition example for 7 workstations. On the right is Dallas;

for Fort Worth on the left only the major arterials are included. The corresponding

microsimulation runs faster than real time.

a basically time-step driven simulation. Depending on the speci�c coding of

the CA rules, more than one sub-time-step may be necessary, each requiring

an exchange of boundaries. The basic parallel update scheme works as follows:

Each CPN scans its inter-CPN segments and transfers boundary information to

its neighbors. Then, it enters a loop waiting for incoming boundaries from its

neighbors. As soon as it has received a complete set, it executes a sub-time-step

and the cycle is repeated. Note that there is no necessity to trigger a time-

step through a master CPN, since each CPN only depends on its neighbors for

consistent execution.

As for the length of boundaries, an optimization can be made by taking

advantage of speci�c characteristics of the CA rule set. Usually the boundary

that has to be transferred is as large as the interaction range

5

of the CA rules,

which is currently v

max

. This would result in encoding and decoding of all vehicle

5

Actually, the real value that de�nes the boundary length is the maximum of both

interaction range and maximum velocity, but in a consistent, collision-free CA update



0

500

1000

1500

2000

2500

3000

1 10 100
number of CPN

dallas (projected)
dallas

study area (projected)
study area

germany (projected)
germany

Fig. 6. Number of inter-CPN segments versus number of CPNs.

data that are located within a range of v

max

sites from a boundary. If the local

density is high, that is, the boundary is located within a tra�c jam, there may

be more than one vehicle per lane. The CA rules, however, only refer to the

immediate predecessor or successor on each lane, reducing the maximumnumber

of vehicles in a boundary to one per lane. A more detailed description of aspects

related boundary exchange can be found in [21].

8.3 Dynamic Load-balancing

Since the simulation is time-step driven, it is the goal to equalize the update

times on all CPN. Unfortunately, there may disparities among the CPN, mainly

for two reasons: The initial domain decomposition which was based upon a

simple estimate, (a) did not include the computational load of the intersection

functionality, and (b) did not cover inhomogeneous distribution of tra�c during

rush hours.

Optional dynamic load balancing can be performed to decrease the load

disparities. In one tra�c micro simulation [19], the implemented method corre-

sponds to a local decision, local migration (LDLM

S

, see [22]) strategy applied

to the network nodes. Incident edges are transferred or split accordingly. When

the �rst is always at least as large as the second. In our current rule-set they happen

to be equal.



a part of a local network has to be o�-loaded, nodes are sequentially transferred

along the boundaries with the node furthest away from the center of the sub-

network being selected �rst. As an optional restriction only those nodes can be

selected that maintain one connected component on the CPN.

The 
exible data structures which are required to perform dynamic load bal-

ancing prove to have another advantage: it is possible to remove or add CPN dur-

ing the run-time of the simulationby (a) systematically reducing the sub-network

on a CPN to zero before removing it, or (b) transferring a single seed node on

a newly inserted CPN. In the latter case, the on-going dynamic load-balancing

will transfer more and more load the new CPN until it is indistinguishable from

the other ones.

8.4 Performance Estimates

We have made a �rst attempt to deduce an upper bound for the e�ciency e(p)

of a large scale tra�c simulation running on p CPN. It is based upon a set

of parameters which can be retrieved from simple measurements. We only cite

results here. A more detailed version (including an additional estimate for a

two-dimensional communication topology) can be found in [20].

Assuming a time of T (1) required for one time-step on a single-node machine,

the necessary input parameters turn out to be:

{ the size of the street network (number of edges, number of nodes) resulting

in estimates for the number of neighbors N

n

(p) (with an average number of

n

n

(p) = N

n

(p)=p per CPN) and the number of boundaries B(p) (with an

average number of b(p) per CPN),

{ the number of sub-timesteps n

sub

per time-step causing a relative perfor-

mance loss for administration overhead f

adm

(n

sub

) and additional commu-

nication volume,

{ the average boundary length b

size

and the boundary message header size

b

header

, the application-level boundary transmission time t

c1

and transmis-

sion latency t

cl

both given as fractions of T (1),

{ the low-level communication bandwidth C

net

(measured in byte per T (1))

of the computer network, and

{ the relative load gradient f

grad

(p) generated by the granularity of the street

network.

Using these parameters we de�ne four major contributions to the time spent

on one timestep:

{ The raw simulation fraction mainly represents the tra�c simulation itself,

although it includes the administrative overhead for multiple sub-time-steps.

It is equivalent with the e�ciency e(p) of the simulation.

{ The load-gradient fraction represents the loss of execution time due to the

load gradient which builds up throughout the CPN network.

{ The application-level (a-l) communication fraction represents the time spent

on retrieving, coding, transferring, decoding, and storing boundary data.
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{ Finally, the low-level (l-l) communication represents the additional time

spent on low-level communication due to the saturation of the underlying

communication network.

Figure 7 depicts the estimate for a cluster of Sparc 5 workstations connected by

Ethernet. We assumed a relative exponential gradient of 0.01 per layer. E�ciency

quickly drops below 0.5 for 30 CPN due to the network saturation by low-

level communication. Estimates like these can be used to determine the optimal

number of CPN to use for a given network size and additional time restrictions.

9 Summary and implications of the computational results

The purely site-based approach is very fast when it uses single-bit coding and

runs on machines with vectorizing CPUs. However, in the context of the TRAN-

SIMS project, a simulated vehicle needs additional information associated with

it besides position and velocity. That makes a bit-coded approach problematic.

In addition, comparable computing speeds can be reached on parallel but non-

vectorizing supercomputers.

6

6

The single-bit circle implementation on the CM-5 is really fast. However, one will

not reach the same computing speeds for realistic networks, which are composed of

relatively short links.



For single-lane tra�c, the purely vehicle-based approach is very fast for low

tra�c densities and still a factor of two to three faster than the intermediate

approach for realistic tra�c densities. For multi-lane tra�c, many approaches

turn out to be slower than the intermediate approach [23, 24]. And more so-

phisticated approaches are problematic at the current state of the project since

all additional elements of tra�c interaction such as intersections, ramps, etc.

become more di�cult to implement.

For these reasons, TRANSIMS currently uses the \intermediate" approach,

intermediate between site-based and vehicle-based. The project is very suited

for the use of parallel non-vectorizing supercomputers. Yet, mostly for reasons

of client concerns, it currently runs on SparcStations which are coupled by a

local area network. Supercomputer implementations are in preparation and will

be needed for systematic testing of the dynamics of the simulation.

The reasons why parallel supercomputers are more advantageous compared

to coupled workstations lie in the much faster communications network. As a

rough number, we can simulate about 50 000 vehicles in real time on a typi-

cal desktop CPU. Connecting several of these CPUs via LAN allows simulating

larger systems with the same computing speed. However, it is di�cult to get

faster than 10 times real time with this computational set-up: The communica-

tion between workstations is too slow on a LAN.

Dedicated supercomputers are here, in practical terms, about a factor of 10

faster. That means that one can use additional CPNs for enhancing computing

speed, not for just making the system larger. A simulation 100 times faster than

reality is easily still e�cient (see the Intel iPSC example in Fig. 3).

10 Other approaches

The cellular automaton approach is obviously not the only approach to tra�c

simulation. From a systematic point of view, one has to recognize that one has

trade-o�s between resolution, �delity, and scale [25]. Resolution refers to the

smallest entities which are resolved in the simulation. For example, a microscopic

tra�c model resolves individual vehicles. Fidelity refers to the detail with which

each entity is modeled. For example, the cellular automaton model has a low

�delity driving dynamics. Scale refers to the system size or temporal scale one

can simulate. For example, a model with high resolution and high �delity will

usually run slow, thus only allowing the simulation of a small area and/or short

time period.

In consequence, one could try to make the driving dynamics more realistic

while preserving the resolution. An obvious option is to use continuous instead

of discrete space. Yet, as long as one does not employ an event-driven update

(e.g. [26]), one is still stuck with a coarse-grained time step. And all the well-

understood techniques from discretized di�erential equations, i.e. to look for

the limit of an in�nitely short time step, do not work for tra�c, at least not

in a straightforward way: In driving, there is a delay between changes in the

surroundings and actual changes in the vehicle behavior (given by reaction times,



time to move the foot to the break pedal, vehicle inertia, etc.), which is of the

order of one second. In consequence, as long as one does not model this delay

explicitly but just uses information from the last time-step for the update, time-

steps shorter than one second actually lead to less realistic tra�c dynamics [27,

28, 29]. Moreover, just replacing discrete by continuous space while retaining

the one second time-step does not automatically lead to more realistic tra�c

dynamics. For example, the published fundamental diagram of the PARAMICS

project [30] lacks the typical variance structure real world tra�c shows under

the same circumstances.

PARAMICS is an implementation specially targeted for parallel supercom-

puters, and has been used on large scale tra�c networks [31, 32]. It reaches

250 000 veh sec/sec on a 16k Connection Machine 200 with 512 Floating point

units, and 360000 veh sec/sec on 32 nodes of a Cray T3D [30].

The traditional TRAF/NETSIM [33] uses continuous space and a time-

stepped update. A supercomputer implementation on a Cray XMP reached

a real time limit of 1000 km [34], which should translate into approximately

13 300 veh sec/sec. Yet, the implementation did not vectorize, so that the simu-

lation does not run much slower on a desktop computer.

Other microscopic models using continuous space and a time-stepped update

are, e.g., the Wiedemann model [35], AS [36], MISSION [37, 38], VISSIM [39],

THOREAU [40], SISTM [41, 42], and Release 2 INTEGRATION [43, 44]. They

have di�erent degrees of �delity. Most of them have more or less well documented

dynamics, but computational speeds are hard to �nd. Quite in general, it seems

that 10 000 veh sec/sec is an upper bound on speeds for these models on a current

desktop computer.

For certain questions one may get around a detailed microsimulation. For ex-

ample, in situations with only very few junctions or intersections, 
uid-dynamical

approaches may be useful [45, 46, 47, 48, 49], especially for \corridor problems",

where all tra�c heads for a common destination such as a Central Business

District [50, 51]. Sometimes, the tra�c dynamics between intersections can be

neglected [52].

Schwerdtfeger proposed a model where individual vehicles are moved accord-

ing to averaged 
uid-dynamical rules [53]. DYNASMART [54] and Release 1 of

INTEGRATION [55] use similar methods. An early version of DYNASMART

reports a computational speed of approx. 600000 vehicle seconds per second on

a CRAY X-MP/24 [56]; since the degree or vecorization is not reported, it is

impossible to compare this to other results. Yet, the microsimulation approach,

which resolves each individual traveler, is by far the most general and most robust

approach. Also, note that INTEGRATION moved to a microscopic approach in

Release 2 [44].

11 Some preliminary TRANSIMS results

The TRANSIMS team is currently working on a so-called case study to evaluate

and enhance functionality on a practical example and in close collaboration with



Fig. 8. Superposition of all plans between 17h and 17:30h. On dark roads, demand is

higher than capacity, i.e. more vehicles want to go through these roads in that half an

hour than what is physically possible. The result has to be congestion on some or all

of the roads entering the dark ones.

an MPO (Municipal Planning Organization). A 5 miles � 5 miles area inside

Dallas has been selected as the primary region of interest, but di�erent parts of

the project concentrate on di�erent spatial scales.

The focus of this case study is the microsimulation. However, it should be

clear from the introduction of this paper that it is di�cult to run a meaningful

regional microsimulation without plans. (Interestingly, also the inverse is true:

Without a microsimulation, it is impossible to evaluate if a certain set of plans



Fig. 9. Simulation of the plans which were underlying Fig. 8. The �gure shows only a

small part of the simulated area, near the intersection of the two freeways. Note that

the freeway coming from the south (\Dallas North Tollway") only extends as a much

smaller street to the north. In consequence, congestion builds up on all roads which

have tra�c heading for that road. Note (see Fig. 8) that demand for this northern part

of the Dallas North Tollway was higher than capacity.

makes sense.) In consequence, an interim method to generate plans has been

designed. It works as follows:



{ NCTCOG (North Central Texas Council Of Governments) provides the

TRANSIMS team with time-dependent origin-destination data on a zone ba-

sis. This data comes out of more conventional models and is used unchecked.

{ TRANSIMS generates individual trips from these aggregate numbers and

assigns more speci�c starting and ending points inside the zones for these

trips (\population generation").

{ The planner generates route plans for these trips, i.e. for each trip a \reason-

able" sequence of links (streets) is generated which connects the starting and

the ending points. Only car tra�c is assumed (Dallas does not have public

transit.)

{ Finally, these trips are executed in the microsimulation.

Currently (August 1996), the main problem is to �nd a reasonable set of

plans. In other words: Unrealistic features in the microsimulation are currently

dominated by unrealistic features in the plans. Figs. 8 and 9 depict the problem

and at the same time visualize some parts of the methodology. Fig. 8 shows a

superposition of all plans for the period between 17h and 17:30h. Dark links

mean that demand is higher than capacity, i.e. more vehicles want to go through

these links in that half hour period than what is physically possible.

Fig. 9 shows a simulation of that set of plans. The �gure shows only a small

part of the simulated area, near the intersection of the two freeways. Note that

the freeway coming from the south (\Dallas North Tollway") only extends as a

much smaller street to the north. In consequence, congestion builds up on all

roads which have tra�c heading for that road. Note (see Fig. 8) that demand

for this northern part of the Dallas North Tollway was higher than capacity.

That is, demand which is much higher than capacity for the northern exten-

sion of the Dallas North Tollway leads to signi�cant congestion starting on the

entrances to that road, and that congestion dominates the dynamics. The reason

why this is unreasonable is simple: If this would happen in reality, people would

notice and �nd other ways north. We are currently in the process to investigate

relaxation procedures for plansets which emulate this people's behavior and thus

should avoid such dominating congestion structures.
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