
Description of the

Parallel Toolbox and Related Topics

Version 1.0.0

http://www.ZPR.Uni-Koeln.DE/GroupBachem/VERKEHR.PG/RESEARCH.P/toolbox/

Marcus Rickert

1

January 6, 1996

1

ZPR, Universit�at zu K�oln, Germany and TSA-DO/SA, Los Alamos National Lab NM, USA

Contents

1 Introduction 9

1.1 General remarks : 9

1.2 Motivation for the Toolbox : 9

1.3 Change Log : 10

1.3.1 Version 0.9.3 dated 02{28{95 : 10

1.3.2 Version 0.9.4 dated 03{13{95 : 10

1.3.3 Version 0.9.5 dated 03{29{95 : 11

1.3.4 Version 0.9.6 dated 04-24-95 : 12

1.3.5 Version 0.9.7 dated 05{24{95 : 12

1.3.6 Version 0.9.8 dated 06{05{95 : 13

1.3.7 Version 1.0.0 dated 01-06-96 : 13

1.4 Known bugs : 14

1.5 Who's who : 14

2 The Parallel Toolbox 17

2.1 Requirements : 17

2.1.1 Supported Platforms and Compilers : : : : : : : : : : : : : : : : : : 17

2.1.2 Parallel Virtual Machine (PVM) : 17

2.1.3 Files : 18

2.2 Concepts : 19

2.2.1 Parallelization : 19

2.2.2 Platforms : 20

2.2.3 Parallel Structure : 20

2.2.4 Load Balancing : 21

2.2.5 Distribution : 22

3

4 CONTENTS

2.2.6 Events and Messages : 23

2.2.7 Object Hierarchy : 23

2.2.8 Objects and References : 25

2.2.9 Context Objects : 26

2.2.10 The Timing of a Simulation Run : 26

2.3 Boundaries : 28

2.3.1 External Boundaries : 29

2.3.2 Internal Boundaries : 29

2.3.3 Consistent Handling of Boundary Objects : : : : : : : : : : : : : : : 30

2.3.4 Timing : 31

2.4 Initial distribution : 31

2.4.1 Recursive algorithm : 32

2.4.2 Correction : 33

2.5 Load Balancing : 33

2.5.1 Why Load Balancing? : 33

2.5.2 Running Idle Versus Overloaded : 33

2.5.3 Measuring the Load : 33

2.5.4 Local Load Balancing : 35

2.5.5 Global load balancing : 36

2.5.6 Simultaneous Transfers : 36

2.6 Transfer of Topology : 37

2.6.1 Synchronization : 37

2.6.2 Optimizing Communication through Load Balancing : : : : : : : : : 38

2.6.3 Selecting Topology : 38

2.6.4 Transferring Topology : 40

2.6.5 Connectivity : 41

2.6.6 Encoding and Decoding Data : 41

2.7 Parallel Environment : 42

2.7.1 Dynamic Insertion of CPNs : 42

2.7.2 Dynamic Deletion of CPNs : 42

2.7.3 Parallel Filesystem : 43

2.8 Important Classes : 43

2.8.1 Base Classes : 43

CONTENTS 5

2.8.2 Classes TSimulationSlave and TApplicationSlave : : : : : : : : : 44

2.8.3 Classes TSimulationMaster and TApplicationMaster : : : : : : : 45

2.8.4 Classes TBaseNode and TApplicationNode : : : : : : : : : : : : : : 45

2.8.5 Classes TBaseEdge and TApplicationEdge : : : : : : : : : : : : : : 46

2.8.6 Class TGraph(Primitive) : 46

2.8.7 Classes TSuperGraph(Primitive) and TGraphEdge : : : : : : : : : : 47

2.8.8 Classes TBoundary and TApplicationBoundary : : : : : : : : : : : : 47

2.9 Advanced Topics : 47

2.9.1 Talk Mechanism : 47

2.9.2 Memory Management : 48

2.9.3 Changing Load Balancing Behaviour : : : : : : : : : : : : : : : : : : 48

2.9.4 Changing Topology Transfer Behaviour : : : : : : : : : : : : : : : : 49

2.10 Problems : 49

2.10.1 Granularity : 49

2.10.2 Synchronization : 49

2.10.3 Scalability : 49

2.10.4 Fault tolerance : 50

2.11 Coming Up Soon : 50

2.12 Outlook : 50

2.12.1 PMI : 50

2.12.2 Shared Memory : 51

3 How To Use The Parallel Toolbox 53

3.1 Building an Application Framework : 53

3.2 Overloading Methods : 54

3.3 Simulation Control : 54

3.3.1 Initializing : 55

3.3.2 Generating a Network : 55

3.3.3 Activating Load Balancing : 56

3.3.4 Activating Statistics : 56

3.3.5 Initiating a Simulation Sequence : 56

3.3.6 Terminating the Simulation : 56

3.4 Gathering Statistics : 57

6 CONTENTS

3.5 Graphics : 58

3.5.1 Network Windows : 58

3.5.2 Topology Window : 58

3.5.3 Views : 58

3.6 Using Command Line Options : 61

3.7 Running the Simulation : 61

3.7.1 Con�guring Your System : 61

3.7.2 Using and Troubleshooting PVM : 62

3.7.3 Dedicated Parallel Machine : 62

3.7.4 Architecture of the Intel Paragon : 62

3.7.5 Local Area Network : 64

3.7.6 Dynamic Insertion of CPNs : 65

3.7.7 Dynamic Deletion of CPNs : 65

3.8 Debugging the Simulation : 65

3.8.1 Debugging the master process : 65

3.8.2 Debugging a slave process : 66

3.9 The ZPR Micro Simulation : 67

3.9.1 Command Line Options : 67

3.10 The CA Demo With Periodic Boundary Conditions : : : : : : : : : : : : : : 67

3.10.1 Command Line Options : 67

3.11 The Network CA Demo : 68

3.11.1 Command Line Options : 68

4 Toolbox Extension for Rectangular Grids 69

4.1 Concept : 69

4.2 Structure of The Grid Extension : 70

4.3 How To Use The Grid Extension : 72

4.3.1 Building An Application Framework : : : : : : : : : : : : : : : : : : 72

4.3.2 De�ning Grid Point Functionality : : : : : : : : : : : : : : : : : : : 72

4.3.3 Simulation Control : 75

4.4 Prede�ned Grid Extension Command Line Options : : : : : : : : : : : : : : 75

4.5 Game of Life Demo : 75

4.6 Two Dimensional Tra�c CA Demo : 76

CONTENTS 7

A Glossary 77

B Description of Classes 79

B.1 Class TObject : 79

B.2 Class TTransferObject : 80

B.3 Class TStatObject : 82

B.4 Class TBaseNode : 83

B.4.1 Encoding and Decoding of Nodes : 83

B.4.2 Methods de�ning transfer behaviour : : : : : : : : : : : : : : : : : : 85

B.5 Class TBaseEdge : 85

B.5.1 Encoding and Decoding of Edges : 85

B.5.2 Methods de�ning transfer behaviour : : : : : : : : : : : : : : : : : : 87

B.5.3 Methods de�ning boundary behaviour : : : : : : : : : : : : : : : : : 88

B.6 Class TSimulationSlave : 89

B.6.1 Public Utility Methods : 89

B.6.2 Methods De�ning Simulation Behaviour : : : : : : : : : : : : : : : : 89

B.6.3 Methods De�ning Statistics Behaviour : : : : : : : : : : : : : : : : : 90

B.6.4 Methods De�ning Miscelleneous Behaviour : : : : : : : : : : : : : : 91

B.7 Class TSimulationMaster : 92

B.7.1 Public Control Methods : 92

B.7.2 Methods De�ning Simulation Control : : : : : : : : : : : : : : : : : 93

B.8 Abstract data structures : 94

B.9 Trees : 95

B.9.1 Object inheritence tree : 95

B.9.2 Object dependency tree : 95

B.10 Location of Classes : 96

List Of Figures 96

List Of Tables 101

8 CONTENTS

Chapter 1

Introduction

1.1 General remarks

This manual replaces the paper A First Draft on how to Integrate High Fidelity and Cel-

lular Automata Approaches to Microsimulation in TRANSIMS on a Distributed Computer

Network. It is meant to describe the concepts of the Parallel Toolbox (chapter 2), and its

usage (chapter 3). As of version 0.9.8 the old chapter 4 TRANSIMS related topics is

obsolete. It will be replaced by seperate documentation provided by the two teams in Los

Alamos and Cologne. Please refer to the appropriate WWW pages:

http://studguppy.tsasa.lanl.gov/

http://www.ZPR.Uni-Koeln.DE/GroupBachem/VERKEHR.PG/RESEARCH.P/

The reader should know that is only a working paper which tries to summarize all ideas

that might lead to a functioning toolbox and application. The author strongly encourages

critical comments on any part of this paper. Also this summary is inhomogeneous as far as

the level of detail is concerned. Some aspects of the implementation are still very unclear

so that in places only handwaving arguments or explanations are given.

This manual will be updated regularly as the project proceeds. New features and changes

will be logged in 1.3.

1.2 Motivation for the Toolbox

High �delity tra�c simulations have been created by several scienti�c and engineering

groups all around the world over the last decades. Due to its scale TRANSIMS will run

into the same problems as any of its predecessors: computational speed provided by today's

conventional

1

computers is still not su�cient to cope with the extremely large number of

1

that is normal single node computers

9

10 CHAPTER 1. INTRODUCTION

individual objects that have to be simulated in real time for a realistic network (e.g. of a

major city like Albuquerque or let alone the Los Angelos basin).

In this manual two methods will be described to increase the performance of the simulation

and thus to make a large scale computation feasable:

� Parallel computers will be used to distribute the network onto several computa-

tional nodes. The toolkit PVM will provide a programming environment that allows

porting an application on a large variety of modern supercomputers like the CM-5,

the T3D, the Paragon, or the Parsytec. The Parallel Toolbox serves as an interface

layer between PVM and the application level providing several services neccessary in

a parallel computer environment.

� Cellular automata will serve as an alternative model for simulating the motion of

the vehicles. In contrast to the high �delity model based upon intelligent objects CAs

can be regarded as a low �delity solution which still captures the main characteristics

of tra�c ow while boosting computational speed by a factor of 10 to 100. There

are limitations to the concept of CAs which will probably emerge as soon as �rst test

runs are performed. Certain problems will deliver unsatisfactory (or even qualitively

wrong) results when solved in an CA approach. One of the main objectives of a

program which integrates both models will thus be

{ to compare results quantitively and qualitively, and

{ to �nd parameters by which to decide whether to use slow high �delity or the

fast low �delity approach.

1.3 Change Log

This section summarizes the changes of the toolbox. A more detailed description can

usually be found in $CHOME/include/ChangeLog.h.

1.3.1 Version 0.9.3 dated 02{28{95

� Classes TIntelligentObject and TIntelligentParallelObject are obsolete.

� The handling of error and warning messages has been completely revised: each class

derived from TBaseObject can overload methods to describe the name of the class

and the current contents of the instance of the class.

� There are three new timers: GraphicsTimer, BoundaryTimer, and BalanceTimer.

1.3.2 Version 0.9.4 dated 03{13{95

� TSimulationSlave::SelectNestNodeToBeTransferred now selects the node fur-

thest away from the center of mass of the subnet. This is a very easy way to keep the

subnets nicely shaped.

1.3. CHANGE LOG 11

� First attempts with dynamic load balancing on rectangular grids successful. Not

stable yet, though.

� Errors in talk mechanism �xed a�ecting collisions of talk requests.

� Coloring of graph edges implemented restricting load transfers between CPNs to slots

de�ned by the color of the corresponding graph edge.

� Some changes in default functionality of methods of TSimulationSlave reducing the

number of overloaded methods in TApplicationSlave.

� New template TApplication<> reducing the main application source �le to several

lines.

� First changes to comply with ANSI-C++ standards and to enable compilation on

SunPro compilers.

� New methods De/EncodeNodeData of TBaseNode to de/encode additional node infor-

mation.

� New Grid Extension demo Dim2ca simulating two dimensional tra�c.

1.3.3 Version 0.9.5 dated 03{29{95

� First version running on the dedicated Intel Paragon.

� During spawning of slaves a version dependant magic number is checked to verify the

compatibility of di�erent binaries.

� It is now possible to dynamically insert a CPN having more than one processor.

� A new version method for simulation control called SimulationControl2 simpli�es

programming since the operation is no longer based on callbacks and switch state-

ments. The ancestor method of TSimulationControl must not be called anymore!

� The application periodic features a new multi lane CA. In future there will be two

demo applications: periodoc will simulate a tra�c circle with periodic boundary

conditions, network will be restricted to displaying networks. The latter still uses the

old CA. This will change.

� New classes TView, TViewManager, TViewManagerSlave, and TViewDataHandler to

display excerpts (views) of the network at a high level of detail (individual vehicles).

The class TBaseEdge has been added stubs to transfer and display the data. The new

demo periodic supports this feature.

12 CHAPTER 1. INTRODUCTION

1.3.4 Version 0.9.6 dated 04-24-95

� The method TTransferObject::Activate is obsolete. In all descendant classes this

method has to be replaced by TTransferObject::ActivateLevel (see B.2).

� Most inline and template methods have been moved to �les of their own. The

naming conventions are TType.i.C for include methods and TType.t.C for template

methods. The �les are located in the same directory as the corresponding TType.h

�les. The main �le generating all template instances must de�ne the conditional

TEMPLATEBODIES before the �rst #include. See for example MicroSimTemplates.h.

� TBoundary has a new ag External which is used to di�erentiate between an external

boundary from another CPN and an internal boundary. Moreover boundaries can be

reversed which makes ToBoundaries behave linke FromBoundaries and vice versa.

� The ZPR micro simulation is available in a �rst (very simple!) version (see 3.9). It

will eventually replace the old network demo.

� The TView mechanism is stable now.

� The class TMultilaneEdge now handles bidirectional tra�c using two instances of

TMultilaneGrid.

� The method TBaseNode::PrepareTimeStep now has default methods for nodes of

valence 1 and 2: vehicles are reected at nodes of valence 1 and simply propegated at

nodes of valence 2.

� The network and topology windows are sized according to aspect ratio of the simula-

tion network.

1.3.5 Version 0.9.7 dated 05{24{95

� The starting of applications is now managed by two shell scripts. Please see section

3.7.1.

� Master and slaves processes can be started with a nice value passed as command line

option.

� Slave processes can be debugged.

� Load ratio history now depends on real time and no longer on time steps.

� Most nethods handling dynamic load balancing have been moved from

TSimulationSlave to new class TLoadBalance.

� Dynamic load balancing for street network works for two CPNs.

� Toolbox is stable with only one CPN.

1.3. CHANGE LOG 13

� MicroSim{Make�le has been completely revised. The subdirectories common, toolbox,

and CA now have make�les of their own. Their objects are kept in architecture de-

pendant libraries which are located in $CHOME/lib/$PVM ARCH.

1.3.6 Version 0.9.8 dated 06{05{95

� New architecture SGI5 on Silicon Graphics machines running Irix5.

� Relatively stable dynamic load balancing on street networks.

� Command line option -X excludes master from distribution of street network. This

option is primarily intended for fast parallel computers with slow frontends (e.g. Intel

Paragon).

� Command line option -U<time steps> activates the communication bench mark.

� All make�les of MicroSim have been completely revised. They are located in the

script subdirectory. A site dependant make�le named $CHOME/site/SiteMakefile

can be supplied to de�ne local settings. This make�le is not part of the archive and

thus will never be overwritten by new versions.

1.3.7 Version 1.0.0 dated 01-06-96

This is the �nal version of the toolbox. It comprises most of the features it was originally

designed for. All future versions will incorperate shared memory not only as supported

PVM{architecture but also structurally: a simulation distributed in a heterogenous com-

puter network will use shared{memory techniqes (e.g locking) locally on CPNs and message

passing techniques as means of communication between CPNs.

Here's a list of the new features of version 1.0.0:

� New class TEventHandler o�ers faster event handling by passing events directly to

the receiving class methods instead of going through long case{switches.

� Full speration of toolbox and graphics.

� Usage of declarator const with most class methods.

� Builtin performance (speed, load balancing, and communication) statistics available.

� Toolbox now works on heterogenous hardware networks with more than one bi-

nary data representation. The encoding method is switched automatically from

PVM DATA RAW to PVM DATA DEFAULT and back.

� Source code (excluding graphx) compatible with new GCC version 2.7.2.

� New architectures SUNMP, SGIx, and ALPHAMP. The toolbox compiles on RS6K for IBM

machines but still crashes. This is probably due to the fact that the GCC is buggy

for the IBM risc architecture.

14 CHAPTER 1. INTRODUCTION

� New option -C to allow o�oad of not connected net parts (test version). This may

improve load balacing for small networks even though communication is increased.

� Architecture independent signal handling. Source code should now compile on most

unix machines.

� TBaseNode now has new �eld AssociatedData. The router's shortest path algorithm

uses this �eld to store Dijkstra data.

1.4 Known bugs

Here's a list of some little (and some not so little) bugs that are well known and will

hopefully be �xed in one of the upcoming versions.

� The caption of the topology display is not updated after deletion of insertion of CPNs.

� The dynamic load balancing on street networks still crashes once in a while. This

might be due to the fact that under weird circumstances the o�oad algorithm still

selects clusters in such a way that a subnet on a CPN is split into fractions.

1.5 Who's who

There are a lot of people involved in the development and programming of the toolbox and

the TRANSIMS application. Here are a few:

Chris Barrett (roberts@tsasa.lanl.gov) Project leader, theory of simulation and dynamic

load balancing methods.

Kathy Bergbigler (kbp@lanl.gov) Dynamic load balancing.

John Davis (jfd@lanl.gov) Intersection functionality, driver logic, route plans.

Stephen Eubank (eubank@tsasa.lanl.gov) Adaption of the toolbox to the requirements

of TRANSIMS.

Kai Nagel (kai@tsasa.lanl.gov, kai@zpr.uni-koeln.de) Theory of high speed computation,

cellular automata.

Rob Oakes (oakes@tsasa.lanl.gov) Con�guration management, support.

Peter Oertel (poertel@zpr.uni-koeln.de) Programming of cellular automata.

Michael Olesen (michael@tsasa.lanl.gov) Graphics toolbox.

Steen Rasmussen (steen@tsasa.lanl.gov) Theory of simulation, cellular automata re-

search.

1.5. WHO'S WHO 15

Marcus Rickert (rickert@tsasa.lanl.gov, mr@zpr.uni-koeln.de) Parallel Toolbox, Grid

Toolbox Extension, and dynamic load balancing methods.

Jay Riordon (jay@tsasa.lanl.gov) Cellular automata research.

Doug Roberts (roberts@tsasa.lanl.gov) Intersection functionality, driver logic.

Paula Stretz (stretz@agps.lanl.gov) Software team leader.

Here's the Cologne crew from Germany:

Achim Bachem (bachem@zpr.uni-koeln.de) Chairman of the Zentrum f�ur Paralleles

Rechnen in Cologne.

Christian Gawron (gawron@zpr.uni-koeln.de) Graphics toolbox, multi threaded version.

Christoph Moll (cm@mi.uni-koeln.de) Coordination, shortest path algorithms, vehicle

routing.

Peter Oertl (poertel@zpr.uni-koeln.de) Programming.

Peter Wagner (pwagner@zpr.uni-koeln.de) Coordination, tra�c research.

16 CHAPTER 1. INTRODUCTION

Chapter 2

The Parallel Toolbox

2.1 Requirements

2.1.1 Supported Platforms and Compilers

The Parallel Toolbox has been tested on the following platforms lately:

Operating System PVM Architecture Compiler date

Sun OS 4 SUN4 gcc 2.6.3 05{25{95

Sun OS 4 SUN4 SunPro ?

Solaris 2 SUN4SOL2 gcc 2.6.3 05{25{95

Solaris 2 SUN4SOL2 SunPro ?

Paragon PGON gcc 2.6.3 05{26{95

Linux LINUX gcc 2.6.2 06{05{95

Irix5 SGI5 gcc 2.6.3 06{04{95

Alpha ALPHAMP gcc 2.7.2 12{15{05

Irix6 SGI(MP)64 gcc 2.7.2 01{06{96

Solaris 2 SUNMP gcc 2.7.2 01{06{96

Table 2.1: Platforms

The toolbox compiles and links on the SGI64 architecture but still crashes immediately

after startup.

2.1.2 Parallel Virtual Machine (PVM)

The Parallel Toolbox requires a consistent installation of the PVM toolbox version 3.3.x.

Most of the above architectures have been tested with version 3.3.6 and 3.3.7.

17

18 CHAPTER 2. THE PARALLEL TOOLBOX

2.1.3 Files

Supposing CHOME to be the root directory of c source code the source code �les of the Parallel

Toolbox and the demos are arranged in the following combination of subdirectories:

$CHOME/common contains low level classes and tools which are independant of both the

toolbox and the demos.

$CHOME/scripts contains shell scripts used for installing the toolbox and running toolbox

applications. Most of the scripts are written for csh or tcsh which should be avail-

able on all platforms. It also contains default make�les which are included by the

application make�les.

$CHOME/toolbox contains all classes of the toolbox. For a description of each individual

class and the location in the source �les see B.10.

$CHOME/include contains include �les for both the common and the toolbox directories.

$CHOME/include/ChangeLog.h contains details about changes of the Parallel Toolbox.

$CHOME/include/DEFINES.h contains a list of all conditional de�nes used in the Parallel

Toolbox.

$CHOME/include/ToDo.h contains a list of all the things that are still to be done.

$CHOME/include/KnownBugs.h contains a list of all known bugs which are known to the

authors and will hopefully be �xed soon.

$CHOME/include/Communication.h contains communication benchmarks.

$CHOME/include/Computers.h contains a overview of the computer architectures used in

the �le above.

$CHOME/network contains overloaded classes of the network CA demo.

$CHOME/periodic contains overloaded classes of the CA demo with periodic boundary

conditions. This demo is actually not a demo but an application used to examine

di�erent lane changing rules in a two lane CA. It uses the CA de�ned in $CHOME/CA.

$CHOME/frame contains dummy �les that can easily be copied to de�ne the application

framework for a new application.

$CHOME/CA contains the new multilane bidirectional CA classes.

$CHOME/CA/Rules contains di�erent lane changing algorithms for TMultilaneGrid.

$CHOME/MicroSim contains the classes of the ZPR micro simulation.

$CHOME/TRANSIMS contains overloaded classes of the TRANSIMS application including a

simple single lane CA. Some of these �les are used by the demo in network.

2.2. CONCEPTS 19

$CHOME/grid contains classes de�ning the toolbox extension for rectangular grid applica-

tions.

$CHOME/life contains classes of the Game of Life demo using the Grid Toolbox Extension.

$CHOME/doc contains dvi and ps images of this manual.

Versions of the toolbox will be made available in two tar �les:

� toolbox-<version>.tar.gz containing all �les in common, toolbox, include,

network, TRANSIMS, frame, and doc.

� grid-<version>.tar.gz containing all �les in grid and life.

2.2 Concepts

2.2.1 Parallelization

In microsimulations computational speed is one of the main objectives. Any simulation

should run as fast or faster than the problem it tries to model takes in real time. For a

large scale simulation of a tra�c network this is only possible by distributing the network

onto several computational nodes, called CPNs.

To achieve this aim the objects of the simulation are associated with nodes and segments

which are inserted into a graph. In case of a tra�c simulation this association is trivial since

intersections directly correspond to nodes and segments to edges. In case of the toolbox

extension for grids nodes are associated with subgrids of the grids while edges contain the

boundary dependencies of the subgrids.

The major requirements of the toolbox are:

� The computation on the nodes and edges of the graph is local, that each object might

access data residing on its neighbours, but not on objects randomly located somewhere

else in the graph. This implies that there has to be maximum range of causality

over which objects of the simulation can inuence each other. On edges connecting

two CPNs all objects residing within this range are transferred to the remote CPN

through messages (see 2.3). In tra�c simulation this range is de�ned by the driver

logic.

� It must be possible to formulate the update logic of the simulation as time step

driven with a constant time step.

If the above requirements are met the Parallel Toolbox automatically provides the following

mechanisms:

� distribute the network onto several computational nodes,

20 CHAPTER 2. THE PARALLEL TOOLBOX

� provide an easy programming interface for controlling the course of the simulation

� provide methods to gather statistics during run time of the simulation

� perform a dynamic load balancing during the progress of the simulation in a straight

forward easy approach,

� remove or add computational nodes (except the master control node) during the

progress of the simulation after an appropriate waiting period.

In future versions e�orts can be made to

� optimize the load balancing so that the frequency and/or amount of communication

between nodes is minimized,

2.2.2 Platforms

Roughly spoken at the moment there two major types of parallel computer hardware:

� The �rst type can be called the high end version because it usually includes espe-

cially designed hardware and/or software for both on node computation as well as

communication between the nodes such as the CM-5 (Thinking Machines), the T3D

(Cray Research) and the Paragon (Intel). On these systems programs are usually

assigned to a partition of dedicated nodes; that is, they run in a multiple task single

user environment.

� The second type of parallel systems is simply a cluster of workstations connected by a

LAN such as Ethernet or better FDDI. Compared to their high end counterparts they

are far less expensive but often su�er from poor performance as far as communication

is concerned.

To keep the implementation as portable as possible the library PVM was chosen to take

care of the communication between the computational nodes. As of the latest version of

README �les PVM exists in native ports for both the CM-5 and the Paragon so that a

relatively high speed can be expected on these platforms. On the T3D PVM is the native

communication library directly supported by the manufacturer. As for the workstation

clusters PVM allows to combine di�erent operating systems and/or hardware in a LAN or

even globally via Internet.

2.2.3 Parallel Structure

Applications based upon the Parallel Toolbox will have a SIMD (Single Instruction Multiple

Data) structure combined with master slave control (see �gure 2.1). All CPNs will run the

same compiled binary, but they will di�er by the subnet that they handle during the

simulation. There will be one CPN called master with special functions. All other CPNs

are called slaves.

The master will perform all tasks of a slave plus the following special functions:

2.2. CONCEPTS 21

Disk

Disk Disk Disk

Disk

Slave

Subnet 1

Subnet 3

Slave

Subnet 2
User Interface

Server

Master

Communication

Subnet 4

Slave

Figure 2.1: SIMD Master Slave Structure

� supply a text user interface or a GUI,

� control the PVM environment,

� control the simulation.

The CPNs will be connected through a communications network with access to �le servers.

All CPNs will have local storage capacities.

2.2.4 Load Balancing

It is the goal of an application running on a parallel computer network to load all available

CPNs equally, that is equal simulation intervals should take the same wall clock time on

the CPNs. The easiest approach is static load balancing in which the objects of the

simulation are distributed onto the CPNs exactly once before the start of the simulation.

This initial distribution depends on the number of available CPNs as well as their relative

performances.

Since computational requirements on the individual CPNs may change during the course

of the simulation one has to see to it that busy CPNs are relieved of some of their local

subnet which is then transferred to CPNs running idle. This process is called dynamic

22 CHAPTER 2. THE PARALLEL TOOLBOX

Tile 1

Tile 7 Tile 8

Tile 6Tile 5

Tile 4

Tile 3

Tile 2

Figure 2.2: Initial Distribution of Nodes onto eight CPNs

load balancing. The Toolbox will take care of the load balancing if an estimated value

for the load generated by each single object of the simulation has been made available.

A detailed description of the load balancing techniques can be found in 2.5. For now it is

su�cient to know that load balancing requires both an initial distribution and the ability

to transfer network topology from one CPN to another.

2.2.5 Distribution

As mentioned above the objects of the simulation have to be distributed in such a way

that the execution times needed by the CPNs are more or less equal. But that in itself is

not su�cient since cutting the network into subnets causes generation of boundaries which

themselves lead to communication. It is therefore a goal to minimize the amount (total

message length) and frequency (number of messages) of communication. An easy and yet

e�cient approach is to do a geometric distribution in which each CPN handles a part

of the area de�ned by all nodes of the network (see �gure 2.2).

One has to destinguish between the initial distribution onto a given number of compu-

tational nodes and the dynamic distribution that takes place to keep the load balanced.

Of course, if the dynamic load balancing is sophisticated enough it should be su�cient to

start with the whole network residing on a single CPN and simply add the other CPNs

one after another hoping that the system will adapt accordingly. But this would result

2.2. CONCEPTS 23

in a starting phase in with signi�cant load disparities and very weak performance. So in

order to decrease the time neccessary to reach a load equilibrium the Toolbox does a coarse

initial distribution which is then re�ned by the dynamic load balancing.

The initial distribution tries to split the network in such a way that

� the number of subnets is equal to the number CPNs (which is the minimal number of

subnets),

� the ratios of estimated loads assigned to the CPNs are equivalent to to ratios of the

computational performances of the CPNs,

� the shapes of the subnets are such that the number of boundaries is small.

Figure 2.2 contains a network that is equally distributed onto 8 CPNs each taking care of

the nodes residing on its associated tile. In this example the number of nodes was used to

determine load. A detailed description of the initial distribution can be found in 2.4.

2.2.6 Events and Messages

In a parallel computer environment CPNs communicate through events and messages. In

the Parallel Toolbox an event can be regarded as a package of information which contains

a type, an addressee, and data. One or more events can be combined into a message which

contains a type and a destination CPN. Each object class that may be transferred across

CPN boundaries has to provide methods for encoding and decoding of data contained in

the instance of that object.

In the Parallel Toolbox events are used for:

� controlling the course of the simulation,

� transferring network from one CPN to another,

� transferring boundary information

� transferring statistical data.

The way messages are handled has a strong impact on the performance of the simulation.

It is the goal of the toolbox to minimize the number of messages sent and the sum lengths

of the messages

1

. Whenever possible the Toolbox combines as many events as possible into

a single message.

2.2.7 Object Hierarchy

1

Of course, the toolbox has little inuence on the complex data structures of the simulation. Therefore

if the data structures are large, so will be the messages.

24 CHAPTER 2. THE PARALLEL TOOLBOX

1:2

1:2

TGraphEdgeTGraph<>

TApplicationNode
TBaseNode

TApplicationEdge
TBaseEdge

SimulationObjects

TSuperGraph<>

SimulationObjects

1:n

1:n

1:n 1:n

1:#BoundaryEdges

T
oolbox

A
pplication

Interface

1:n 1:n

1:#Neighbours

TSuperGraph<>

TApplicationMaster
TSimulationMaster

1:n
1:#CPNs

TApplicationSlave
TSimulationSlave

1:1 1:1

Figure 2.3: The Object Hierarchy

The objects of the simulation are arranged in a hierarchy which is displayed in 2.3. Note that

the arrows denote a has-a relationship going from owner to dependant and the expressions

1 : x denote the number x of dependant instances per owner instance. The top levels

CPN topology (TSimulationSlave, TSuperGraph, TGraph, and TGraphEdge) and network

topology (TGraph, TBaseNode, TBaseEdge) are provided by the toolbox. The control of

the application will be achieved by de�ning descendant classes TApplicationSlave and

TApplicationMaster as well as overloading some of their methods. The topology of the

simulation network (e.g. segments and intersections in a street network) is built by de�ning

descendant classes TApplicationNode and TApplicationEdge of the interface level classes

TBaseNode and TBaseEdge. Instances of TApplicationNode and TApplicationEdge are

inserted into the TGraph

2

that takes care of distributing the nodes and edges onto the

available CPNs. The hierarchy representations on the slaves di�er from the representation

of a the master as follows (see 2.4): the master has an instance of TSuperGraph<> for all

CPNs in the CPN topology. This is neccessary for graphics, some control matters and

later global load balancing. The slaves only have instances of their own subnet (which

contains complete lists of all nodes and edges residing on the slave) and one instance for

each neighbouring CPN it has at least one boundary edge in common with. The node lists

and edge lists on those TGraphs, however, are restricted to the boundary edges themselves

2

This is actually wrong. According to the diagramm the nodes and edges are handled by an instance

of TGraph. The user, however, will insert the objects into instance of TSuperGraph, which itself will create

an instance of TGraph and insert the objects into that. During distribution more instances of TGraph (and

instances of TGraphEdge) will be created to eventually match the number of CPNs. At the same time nodes

and edges will be moved between TGraphs accordingly.

2.2. CONCEPTS 25

CPN 2

CPN 3

CPN 4

CPN 1
CPN 2

CPN 1

CPN 4

TBaseNode
CPN Boundary

TGraphEdgeTGraph
Boundary edge
TBaseEdge

Master TSuperGraph Slave TSuperGraph CPN 1

Figure 2.4: Hierarchy Representations on Master and Slaves

and the nodes incedent to the boundary edges. Note that the master functioning as a slave

also has a restricted instance of TSuperGraph.

2.2.8 Objects and References

Objects will be the main means of storing and handling data in the simulation. On the one

hand the are control classes that provide tools and algorithms. Some of the methods of the

prede�ned control classes TSimulationSlave, TSimulationMaster, TBoundary have to

be overloaded to de�ne the functionality of the simulation.

On the other hand there are the prede�ned network data classes TBaseNode and TBaseEdge

which also have to be overloaded, but also have to be generated and combined in such a

way to exactly represented to given network. This is described in 2.8.

Depending on the scope of an object its class will be derived from one of the four base

classes described in 2.8.1. There are two types of references between objects: the �rst

covers references that are not transferred to other CPNs in which case the reference is

represented by a pointer. In case the object is transferred a pointer to another object loses

its validity because on the remote CPN the referenced object will be located in a di�erent

memory location.

To solve this problem all classes that have to be transfered and referenced must be derived

26 CHAPTER 2. THE PARALLEL TOOLBOX

from the base class TObjectID. Each instance of that class used in the simulation will

be assigned a unique ID. On each CPN an AB-tree called ID-tree will be maintained

containing all pairs of (ID, pointer to object) currently residing on that CPN. Whenever

an entity moves from one CPN to another it will keep its ID but its entry in the old ID-tree

will be deleted and inserted in the tree on the new CPN.

All references to objects will be handled through classes of template TReference<>. The

�rst time a TReference is accessed it will search the local ID-tree, retrieve the correspond-

ing pointer to the object and return this pointer. On all subsequent calls it will simply

return the stored pointer.

2.2.9 Context Objects

Warning: The following indented feature has not been implemented yet!

As mentioned in 2.2.7 all objects are organized in a strict hierarchy. Simulation control uses this

hierarchy in a top down manner: control events are passed to the topmost level which forwards them to

all objects of the level below and so on until they reach the bottommost level of objects. Such an object

on the lowest level might need information about each intermediate object lying on the path from the

topmost level. The combination of all these pieces of information is called context and stored in an

class derived from TContext. For each execution of the simulation the toolbox will create an instance

of that context class and pass it down. On its way to the bottom of the hierachy each level stores data

into it. After the execution the instance is disposed.

Beside their functionas a means of passing informationbetween the layers of the object hierarchy context

objects are also useful to pass a huge sets of parameters to a function or an object method avoiding

modi�cations in the declaration of object methods in case the number and/or type of parameters has

changed. Normally context objects they do not have methods although it might be appropriate in some

occasions to supply some for extended data conversion and consistency checking.

2.2.10 The Timing of a Simulation Run

The following enumeration is supposed to convey an idea of the main steps executed during

a simulation run. Also see �gure 2.5.

1. The user initializes PVM on the future master CPN by calling pvm and adding all

CPNs manually or starts a script to do it automatically.

2. The user starts the program on the master CPN with an initial con�guration of slave

CPNs.

3. The master starts all other instances of the program on the slave CPNs. They will

enter the main message loop and wait for messages.

4. The master reads the network structure from an input data �le or creates an arti�cial

network.

5. The master distributes the network and sends out messages to the slave CPNs with

encoded network elements.

2.2. CONCEPTS 27

3

2

1

4

recv seq
recv seq

recv seq

sendreceive execute

topology

slave

CPN 4

receive sequence event
send boundaries
receive boundaries

send boundaries
receive boundaries

execute time step 0

send stat
execute time step 1

send boundaries
receive stat

display
receive boundaries
execute time step 2

send acknowledge
receive acknowledge

send terminate event

CPN 1

master

send sequence event

receive network

send network

distribute net

spawn slaves
start program

slave

CPN 2

slave

CPN 3

cs
 2

recv bnd

send bnd
send bnd

recv bnd

recv bnd recv bnd
send bnd send bnd

send bnd

recv bnd

execute time step 1 send stat send stat
send stat

send bnd

execute ts2
execute ts2execute ts2

execute ts1

execute ts0

execute ts1
execute ts1

execute ts0

send bnd

recv bnd
execute ts0

send bnd send bnd
recv bndrecv bnd

recv bnd

recv term
recv term

recv term

send ack

send ack

send ack

evaluate stat

terminate

terminate
terminate

terminate

recv net
recv net

recv net

start
start

start

co
nt

ro
l s

te
p

1
co

nt
ro

l s
te

p
0

Figure 2.5: Timing of a Simulation Run

28 CHAPTER 2. THE PARALLEL TOOLBOX

6. The master sends an event to all CPNs to start a simulation sequence of a given

number of time steps. All slaves send out the boundaries for the �rst time step to the

neighbouring CPNs. During that sequence the master mainly functions as a slave.

7. The slaves enter the main loop:

� They wait for the arrival of all boundaries from their neighbours.

� If neccessary, statistical data (e.g. idle time statistics) is sent out.

� If idle time statistics are available local load balacing is done.

� They execute a time step.

� Unless the end of the sequence is reached they send out the boundaries for the

next time step.

The master has several additional functions:

� If available, statistical data from the slaves is processed and displayed.

� The X-Windows event queue is checked if there is need to update the graphics

output.

� The PVM environment is checked whether CPNs have to be removed from the

topology or new CPNs can be added to the topology.

8. The master stops the simulation by sending an event to the slaves.

9. The master and the slaves stop execution.

2.3 Boundaries

After the distribution of the nodes of the network there will be edges crossing CPN bound-

aries. Those are called boundary edges. Currently they are cut exactly in the middle so

that each associated CPN computes half of the edge. Note that therefore boundary edges

exist twice (see 2.6). Before either CPN can execute a time step it has know about the

objects on the remote CPN: not all but at least those that are within the range of causal-

ity, that is about all objects that might have in impact on the decision making of objects

residing in the local part of the edge. Therefore on both CPNs the edge is prompted to

provide boundary imformation encoded in a descendant of class TBoundary. This boundary

information is transferred to the remote CPN and over there given to the duplicate of the

edge which appends this information to the local data stored on the edge and thus makes

the execution of the time step possible. This type of boundary will be called external

boundary since it is meant to be transferred to another CPN.

Related to this problem is the handling of boundaries between nodes and edges of the

network: the execution of a timestep on segment might depend on the object con�guration

on the node and vice versa. It seems very likely that these internal boundaries are very

similar if not identical to the external ones so that they could actually be handled by the

same methods.

2.3. BOUNDARIES 29

TBoundary TBoundary

TBaseNode

CPN 1
CPN 2

GetBoundary(FromBoundary)

active Range [0.0, 0.5]
TBaseEdge

active Range [0.5, 1.0]
TBaseEdge

remote

TBaseNode

local

localremote

0.0 1.00.5

SetBoundary

SetBoundary

GetBoundary(ToBoundary)

Figure 2.6: External Boundaries

2.3.1 External Boundaries

As mentioned before, boundaries edges connecting nodes on di�erent CPNs exist on both

CPNs (see 2.6). This might cause a problem because the objects residing on the edge have

to updated in a consistent manner. Either they have to be updated by only one CPN or

if they are updated by both CPNs their updates have to be identical. The boundaries

edges are split into halves

3

. Each half is linked to a local node and the objects on this half

are handled by the CPN that the local node resides on. Around the transition between

the halves there is a certain width in which objects on one half might have an impact on

decisions made by objects on the other half. So the toolbox has to see to it that all data

neccessary for these decisions is passed to the remote CPN. To do this it makes the edge

encode the data into a boundary objects TBoundary by calling the method GetBoundary.

Then this objects is sent to the remote CPN and decoded there by calling the method

SetBoundary. Since each edge has two potential boundaries the values FromBoundary and

ToBoundary are used to di�erentiate between them.

2.3.2 Internal Boundaries

Internal boundaries are boundaries handled by the nodes TBaseNode of the network (see

3

This is true for the current version. In future it might be possible to split the edge at almost any point

and to dynamically shift this location.

30 CHAPTER 2. THE PARALLEL TOOLBOX

TBoundary

TBoundary TBoundary

TBoundary

active range [0.0, 1.0]

TBaseEdge

SetBoundary

GetBoundary(FromBoundary) GetBoundary(ToBoundary)

SetBoundary

Figure 2.7: Internal Boundaries

2.7). In order to simplify programming if would advantageous if the boundaries returned by

the edges through GetBoundary were equivalent to the boundaries required by the nodes.

Vice versa it should be possible to supply node methods that generate boundaries which

could in turn be used by the edges to do an update.

Note that this is only a suggestion. In constrast to the external boundaries which have to

be provided through overloading to guarantee a consistent simulation, internal boundaries

are not automatically handled by the toolbox except in the trivial case of a circular network

with no functionality de�ned on the nodes.

2.3.3 Consistent Handling of Boundary Objects

Both in internal and external boundaries there is a region in which the same objects are

handled by both CPNs. In order to guarantee consistence of the simulation it is neccessary

that both instances of the same object behave exactly identically. In case of a deterministic

simulation this is, of course, no problem. In case that decisions of objects depend on random

number it is neccessary to make the random generator

4

part of the object and to pass it

together with the object data to the remote CPN.

During a time step the objects on the edge usually change positions, that is, some will

probably leave the remote boundary and enter the normal active part of the edge whereas

others will do vice versa (see 2.8). After the time step all objects have to be deleted that

still remain in boundaries supplied by remote CPNs (object 244 for CPN 1 and objects 332

and 567 for CPN 2). Likewise all objects that have entered the local active part of the edge

have to be permanently inserted (object 567 for CPN 1 and object 244 for CPN 2). Note

that object 332 has to be deleted, too, although it would be at the correct location for the

next time step. Leaving it in the edge, however, would lead to collision with the boundary

for the next time step which will contain another copy of that object.

4

that is all values neccessary to reproduce the random sequence on the remote CPN, which could be for

example the current seed of the generator

2.4. INITIAL DISTRIBUTION 31

active range

active range

CPN 2
CPN 1

active range

active range

CPN 2
CPN 1

after time step

before timestep

649 332 244

567

852

244

567

332

332

seed

244

852

567

649 244

332

567

exchange of boundaries object with seedprojected object movement

objects to be deleted

Figure 2.8: Consistent Handling of Boundary Objects

2.3.4 Timing

The Toolbox uses the boundaries for driving the simulation. Every CPN will send its

boundaries to the neighbouring CPNs as soon as possible at the beginning of a timestep.

After that it will start waiting for its neighbours' boundaries to arrive. As soon as all

boundaries have arrived the motion part of the timestep is executed. Due to this interaction

of the CPNs through boundaries they operate weakly synchronized. Between neighbouring

CPNs there may be a di�erence in time steps of �t = �1 as displayed in �gure 2.9: due

to slow execution of time step 1 on CPN C, CPN B has received boundaries from CPN A

for time step 2 and already for time step 3. The toolbox bu�ers those early boundaries

automatically.

2.4 Initial distribution

For the initial distribution of a network with nodes n

1

: : : n

N

onto CPNs C

1

: : :C

C

we have

to make three assumptions:

32 CHAPTER 2. THE PARALLEL TOOLBOX

CPN CCPN A CPN B

t
1

t
2

A C A A

B

B B

CPN C

CPN B

CPN A

topology

idle send boundary receive boundary execute

time step 2time step 1

time step 1

time step 1

Figure 2.9: Timing of Boundaries

� We have performance values for each CPN given in arbitrary but equivalent values

S

1

: : :S

C

where larger values denote better performance.

� Each node n

i

has an estimated load l

i

associated with it which is derived from the

complexity of the node itself and all its incedent edges.

� Each node n

i

has an euclidic location (x

i

; y

i

).

2.4.1 Recursive algorithm

The algorithm is de�ned recursively:

1. If the number of CPNs is one, assign nodes to CPN.

2. Split CPNs in halves C

1

: : :C

bC=2c

and C

dC=2e

: : :C

C

with sum performances

P

bC=2c

i=1

S

i

and

P

C

i=dC=2e

S

i

.

3. Sort nodes according to their x (even depth) coordinates or y (odd depth) coordinates

respectively.

4. Split nodes in such a way at node j that the ratio of the load of the node sets is

equivalent to the ratio of the performance values:

P

j�1

i=1

l

i

P

N

i=j

l

i

!

'

P

bC=2c

i=1

S

i

P

C

i=dC=2e

S

i

2.5. LOAD BALANCING 33

5. Split recursively

2.4.2 Correction

The node sets generated by the above algorithms usually cover rectangular tile of the plane.

The alternating sort according to X/Y coordinates favours similar X/Y ratios for the edges

of the rectangle. The problem is that despite this advantageous shape the nodes of a set

are often not connected, so that some subsets split into even more subsets. Because of the

assumption that each CPN will be assigned a connected subnet (see 2.2.5) this distribution

has to be corrected in the following way:

1. Determine the number of subsets of each CPN and the associated estimated load of

each subset.

2. If the number is greater one assign all subnets but the largest to neighbouring CPNs.

For a given subnet choose only a recepient CPN with which it has a common edge.

2.5 Load Balancing

2.5.1 Why Load Balancing?

There are two major reasons for dynamic load balancing. The �rst is due the simulation

itself since the load that is imposed by the simulation itself changes during the run of the

simulation. In case of a microsimulation this very likely to happen since the computation

is more or less proportional to the number of objects residing on a CPN and as the objects

travel through the network the load moves accordingly.

The second reason refers to local area networks. In contrast to dedicated machines the nodes

in a LAN are often used by other users decreasing the optimally available computational

performance in a time dependant and usually random way.

2.5.2 Running Idle Versus Overloaded

The goal of load balacing for a given set of CPNs is to optimize the overall sum performance

of all CPNs. Therefore the load balancing has to favor a single CPN or some CPNs running

idle over a single CPN running loaded to maximum capacity since in the latter case this

single CPN slows down all others. In �gure 2.10 4 CPNs are shown once with CPN 1

running idle (50%) and once overloaded (100%). If 4 is the maximum performance of the

perfectly balanced system the performance for CPN 1 idling is 3.5 and for CPN 1 overloaded

2.5. Note that this ratio becomes the worse the more CPNs are in the CPN topology.

2.5.3 Measuring the Load

During the simulation each CPN keeps track of the time it spends on di�erent tasks:

34 CHAPTER 2. THE PARALLEL TOOLBOX

CPN 3CPN 2 CPN 4CPN 1

0.5

0.5 0.5 0.51.0

1.0 1.0 1.0

CPN 1 running overloaded: sum performance 2.5

CPN 1 running idle: sum performance 3.5

Figure 2.10: Running Idle Versus Overloaded

1.4

0.8

0.8global

global

local

local
0.2

0.2
0.5

0.5

1.0

1.0

1.0 1.0

1.0

CPN-node

CPN-edge

transfer value0.5

global
0.5

1.0

1.5

1.0

global
0.5

0.5

1.0

transfer direction

Figure 2.11: Local and global dynamic load balancing

2.5. LOAD BALANCING 35

execute time is the time used for execution of the PrepareTimeStep and

ExecuteTimeStep methods of the simulation.

idle time is the time the CPN spends idle, that is: waiting for messages to be processed.

graphics time is the time spent on retrieving and displaying graphics. In many cases this

value will be non-zero only for the master.

boundary time is the spent on retrieving, sending, and receiving boundaries.

work time is anything else.

Beside those �ve timers each CPN also computes the estimated load of the residing subnet

l in arbitrary units and a performance P :

P = corrected load =

estimated load

execution time

=

l

t

This value is stored in a queue of constant length handled by TStatistics

5

. The minimum

value

P

min

= min

Q

P

of all values in the queue Q is used as a measure of realistic performance. In certain intervals

each CPN uses the neighbour statistics mechanism to propegate this P

min

information to

its neighbours together with l .

2.5.4 Local Load Balancing

As soon as a CPN has a complete set from its neighbours it evaluates the P and compares

them to its own. Assume a CPN having n neighbours N

1

: : :N

n

with corrected performance

minimum P

min

1

: : :P

min

n

and estimated loads l

1

: : : l

n

. The local execution time is t

0

and the

local load l

0

. If the performance with exceeds that of neighbour N

j

by a more than minimum

percentage t

min

the CPN will try to o�oad a part of its network to that neighbour.

To compute the exact amount neccessary let us assume that after the transfer the execution

times of the two CPNs t

0

and t

j

should be equal. If l

t

is the amount of load to be transferred

one obtains

t

0

:=

l

0

� l

t

P

min

0

!

=

l

j

+ l

t

P

min

t

=: t

j

After isolation of l

t

one obtains

l

t

=

l

0

P

min

j

� l

j

P

min

0

P

min

0

+ P

min

j

:

This l

t

is the optimal amount of load that should be transferred. Unfortunately the CPN

does not know about the other neighbours of N

j

which might o�oad to N

j

, too. So l

t

is

5

currently the length is constant in time steps, but will soon be constant in wall clock time

36 CHAPTER 2. THE PARALLEL TOOLBOX

corrected by a factor c which should depend on the number of neighbours n

j

of N

j

, for

example c =

1

n

j

, so that the e�ective load amounts to

l

eff

t

=

1

n

j

l

0

P

min

j

� l

j

P

min

0

P

min

0

+ P

min

j

:

2.5.5 Global load balancing

Warning: The following indented feature has not been implemented yet!

term meaning

n number of CPN{nodes

l

i

current load on CPN{nodes i

v

i

valence of CPN{node i

l

opt

= 1 optimal load of a CPN

A

i

set of neighbours of CPN i

Table 2.2: Terms used in descriptions of dynamic load balancing

TLoadBalancer will look for the CPN j having greatest load l

j

. Then it will look for k CPNs n

1

: : : n

k

having least loads so that just

k

X

i=1

(1� l

n

i

) > l

j

� 1

A simple Dijkstra will be run to determine the shortest paths (where the weight of each edge will be

assumed as one) p

1

= e

11

: : : e

1l

1

through p

k

= e

k1

: : : e

kl

k

. The edges on paths p

m

form = 1; : : : ; k�1

will be assigned the transfer values

l

m

^

i=1

transfer(e

mi

) := 1� l

n

m

:

On the last path the edges will be assigned

l

k

^

i=1

transfer(e

ki

) := l

j

� 1�

k�1

X

p=1

(1� l

n

p

):

2.5.6 Simultaneous Transfers

During load balacing actitivy there might be several simulatenous transfers from or to one=)

new in

0.9.4

CPN. We destinguish between three major cases for three CPNs A, B, and C:

A receives from B and C: This should not impose any problems since the insertion of

network topology works independent of the order insertion. Therefore it is safe to mix

transfers events from both CPNs.

A sends to B and C: This is no problem either since A handles the o�oads to B and C

sequentially.

2.6. TRANSFER OF TOPOLOGY 37

A receives from B, but sends to C: This is tricky because due to a certain slack in

execution A might have started to receive topology from A before it start sending

topology to C. What A might have is an inconsistent subnet which might result in

run time errors.

It might be possible to structure sending and receiving of events in such a way that even

third case does not result in errors. For the time being the problem is solved by restricting

transfers between neighbouring CPNs to time slots. To achieve this all graph edges of the

CPN topology are colored at the beginning of the simulation using a certain number of

colors. The coloring is done in such a way that the each node has as few edges with

duplicate colors as posible. The method ColorEdges of TSuperGraphPrimitive does this

job.

In the course of the simulation as CPN boundaries start shifting with respect to each

other graph edges may be deleted and new ones created. In case of a new graph edge the

corresponding CPNs start negotiating about the new color via the talk mechanism. Until

a color is found all transfer across the edge is blocked.

The mechanism is de�ned by the following parameters: t

gap

is the gap in time steps between

transfer of di�erent colors, t

delay

is the talk delay for the �rst transfer, n

c

the number

of colors, and t

poll

the polling interval for idle time statistics. Since a complete series of

transfers has to be �nished before a new is started through new polling there is the following

dependency:

t

poll

� t

delay

+ n

c

t

gap

:

The maximum number of colors neccessary depends on the maximum valence of all CPNs (=

new in

0.9.8

which might be higher than four. Since an increase of colors over four is not desirable

because of the implied derease in transfer frequency it will be neccessary to use some colors

more than once. In such a case in which more than one edge of the same color have

scheduled a transfer one of the edges will be chosen randomly all others will be blocked.

2.6 Transfer of Topology

In the previous section the concepts of dynamic load balancing were described, which

determine how much load is to transferred from which CPN to which of its neighbours.

Transferring the load itself, namely part of the network topology, will be described in this

section.

2.6.1 Synchronization

As mentioned in 2.3.4 neighbouring CPNs may have a di�erence in time steps �t = �1. So

in case that such a �t exists a transfer of topology is not trivial, since the objects residing

on the transferred net elements belong to di�erent time steps, too. The soluation of this

problem is obtaining local synchronicity of all CPNs involved in the transfer. Of course this

38 CHAPTER 2. THE PARALLEL TOOLBOX

synchronicity cannot neccessarily be achieved for the same time that the transfer values are

determined because that might make a slower at time step t wait for its faster neighbour at

time step t+ 1 to reach t which will never happen, since there is no roll back mechanism

6

.

The parallel toolbox solves this problem by delaying the actual transfer for one time step.

This is done through the talk mechanism (see 2.9.1) synchronizing the CPNs at t + 1.

2.6.2 Optimizing Communication through Load Balancing

As soon as synchronicity between two CPNs is reached the o�oading CPN determines

which part if its local subnet it will transfer to its neighbour. As communication is more or

less linear to the number of boundary edges which in turn is linear to the circumference of

a subnet it will be the objective of this selection to keep the subnet convex and the number

of boundary edges as small as possible. Summarized the objectives are as follows:

� Minimize the number of subnets: since each CPN has one subnet to start with this is

equivalent with maintaining the connectivity of the given subnet during selection and

o�oading. This point will be explained in detail in 2.6.5.

� Minimize the number of neighbours: to each neighbour the CPN has to send a message

encoding all common boundary edges. So reducing the number of neighbours reduces

the number of messages. Also it reduces the dependency of the CPNs on each other

allowing more slack in communication.

� Minimize the number of boundary edges: this measure mainly reduces the total mes-

sage lengths of the messages sent to the neighbours.

� Optimize the mapping of subnets onto the communication topology: in contrast to

local area networks in which communication is usually sequential dedicated systems

have a speci�c underlying communication topology. One could de�ne a transformation

which associates locations of the simulation network with locations in the communi-

cations network. It would be an additional goal of the load balancing to minimize for

example the sum distances of the centers of gravity of the subnets projected into the

communication topology to the locations of their corresponding CPNs. That way it

would be likely that local commnication of CPNs with their neighbours would actually

result in local | and therefore parallel | communication on the dedicated system.

2.6.3 Selecting Topology

After the load balancing routines on CPN A have determined how much topology is to be

transferred to its neighbour CPN B , it is now neccessary to select what topology is to be

transferred. The toolbox takes an interativ approach (see 2.12):

6

a roll back mechanims stores all information neccessary the assume any previous time step back to the

time step de�ned by the minimum of all time steps in the simulation

2.6. TRANSFER OF TOPOLOGY 39

a) b)

c) d)

CPN A

CPN B CPN C

CPN A

CPN B CPN C

CPN A

CPN B CPN C

CPN A

CPN B CPN C

current boundary edges

current scanlist nodes third party node

current best selected node

third party edge
Note that the order of selection in this example does not neccessarily reflect an optimized algorithm!

Figure 2.12: Selecting Topology

1. CPN A goes through all boundary edges it has in common with CPN B

7

. All local

nodes that are reached by those boundary edges are added to a scanlist

8

.

2. The method SelectBestNodeToBeTransferred is called which selects the best node

of current scanlist according to the criteria described in the previous section. For the (=

new in

0.9.4

time being the default functionality is to select the node which is furthest away of the

current center of mass of the subnet.

3. All edges that lead from a local node to the selected node are marked to be transferred.

All local nodes reached by the incedent edges of the selected node are added to the

scanlist unless they are already part of it. Then selected node is removed from the

scanlist.

4. Repeat steps 2 and 3 until the desired amount of topology is reached.

7

If there is at least one boundary edge between A and B then there is a CPN-edge between the CPN-node

of A and the CPN-node of B. This CPN-edge contains a list of all boundary edges that those two CPNs

have in common.

8

Some nodes may be reached by more than one boundary edge. They are only added once.

40 CHAPTER 2. THE PARALLEL TOOLBOX

1

2 3

4

CPN A

CPN B

CPN A

current boundary

previous boundary

Figure 2.13: Isolated Subnet after Selection

2.6.4 Transferring Topology

After selectionon on CPN A the topology has to transferred to the remote CPN B (see

2.6.3). There are two problems that might occur:

� Some nodes which transferred may be referenced by other CPNs which will be called

third party nodes. The same applies to edges one node of which id references by

another CPN. Those are called third party edges. In step d) of the �gure there is

one node on CPN C referencing one of the nodes to be transferred from A to B and

one edge between A and C that will connect B and C after transfer. In such a case

two measures are necessary:

{ CPN C has to be informed about the change of ownership of the third party

node.

{ CPN A has to see to it that boundaries sent by CPN C for the third party

edge will be forwarded to CPN B. Note that this neccessary since there is no

synchronicity between CPN C and CPN A or B. So if CPN C is fast compared to

CPN A it might have already sent out boundaries for topology that is no longer

residing on CPN A.

� During selection the method SelectBestNodeToBeTransferred might have chosen

nodes in such a way that isolated subnets would remain on the CPN (see 2.13). In

the example CPN A selects four nodes for transfer (denoted by the order of selection).

The two center nodes within the circle are not selected so that they remain on CPN

A, but isolated from the subnet. A solution for this problem will be described in the

section.

2.6. TRANSFER OF TOPOLOGY 41

local variables

has a TLocalObject

uses a
TDependant

TIndependant

TChild

is a TParent

Figure 2.14: Order of encoding

2.6.5 Connectivity

The problem of connectivity of subnets has been solved using node clusters as smallest (=

new in

0.9.8

transfer unit

9

. The clustering algorithm will be described in later a version of this hand-

book.

2.6.6 Encoding and Decoding Data

In case a complex object (e.g. TApplicationSegment) is transferred to another CPN, a

single event only containing the object itself is not enough since it might contain both

contain local objects and references to dependant objects that will have to be transferred

as well. Consider an object like the one in �gure 2.14. TChild is an object derived from

object TParent. It has local objects such as TObject and references to dependants like

TDependant. The following order will be used to encode the complex object recursively:

1. Encode the parent object TParent.

2. Encode all local variables that are not objects and have global scope and encode heap

variables referenced by local variables.

3. Encode all local objects such as TLocalObject.

4. Encode depandant objects like TDependant.

Note that every object is only a depandant of exactly one other object although it may

be references by several others. Indepandant objects that are primarily handled by other

objects are not encoded. Otherwise they would be multiply created on the destination

CPN.

9

...although the algorithm does not work perfectly yet as of version 0.9.8

42 CHAPTER 2. THE PARALLEL TOOLBOX

On the destination node the object is decoded in exactly the same order. In fact it is the

decoding and not the encoding that determines the order. Part A of the object may have

to encoded before part B because part A may contain information about how to decode

part B.

2.7 Parallel Environment

2.7.1 Dynamic Insertion of CPNs

The toolbox allows the dynamic insertion of a CPN during the run time of the simulation.

This option is advantageous in a local area network since the complete set of workstatios

in the network may not be available at the start of the simulation. For time being it is the

responsibility of the user to prompt the insertion of CPNs. But it may be possible to write

a small utility scanning the LAN for idle CPNs and integrating those CPNs automatically.

The following enumeration summarizes the most important steps of an insertion.

1. The user adds another CPN through the PVM interface.

2. The master receives a prede�ned PVM message containing information about the new

CPN CPN

N

added and initiates a global synchronization for all CPNs at the end of

the current control step.

3. The master uses the idle time data of the most recently time steps to determine the

CPN

A

that has least idle time.

4. The master which neighbout CPN

B

of CPN

A

has least idle time.

5. The master prompts CPN

A

to transfer a single node having a common boundary

edge with CPN

B

to CPN

N

.

6. CPN

A

informs CPN

B

about the transfer with the new node having the status of a

third party node and possibly third party edges described in 2.6.4.

7. The master initiates the next control step and the simulation continues.

8. Over the next few time steps load balancing is blocked for the new CPN. After that

its neighbours will start o�oading through relular load balancing until its load is

balanced with is those of its neighbours.

2.7.2 Dynamic Deletion of CPNs

As the insertion of a CPN the deletion of a CPN CPN

D

will probably only be neccessary

in a local area network. This time, however, the event will probably be triggered by the

shutdown mechanism of the UNIX operating system. In a normal shutdown on a CPN each

process receives the de�ned signal SIGHUP prompting the process to terminate gracefully

before the signal SIGKILL is issued after after a certain delay. The toolbox uses the signal

2.8. IMPORTANT CLASSES 43

to remove the CPN from the CPN topology before the CPN is completely shut down. Note

that this will probably require a longer delay period between the two signals than de�ned

by default. This can be changed by the system manager.

1. CPN

D

receives the signal SIGHUP.

2. CPN

D

refuses to accept any road network from its neighbours, but instead tries to

o�oad everything down to a single node.

3. CPN

D

informs the master if node count has reached one.

4. At the end of the current control step the master initiates a global synchronization.

5. The master picks out one neighbour CPN

N

of CPN

D

and prompts CPN

D

to transfer

the remaining node to CPN

N

.

6. The master terminates the slave process on CPN

D

.

7. The master initiates the next control step and simulation continues.

8. Over the next time steps the neighbours of the deleted CPN will o�oad to their neigh-

bours (and so on) through regular load balancing until the excess load is distributed

over the whole CPN topology.

2.7.3 Parallel Filesystem

Warning: The following indented feature has not been implemented yet!

The PIOUS toolbox (see [?]) provides a distributed �le system based upon PVM. It would be advan-

tageous if the main classes of the Parallel Toolbox provided an interface to PIOUS.

2.8 Important Classes

This section contains a short description of the most important classes of the Parallel

Toolbox. A more detailed description of the methods can be found in B.

2.8.1 Base Classes

Four base classes are declared which all other objects will be derived from. They are

abstract objects; that is, there will not be any instances of the base objects but only

instances of derived objects although none of the object methods will be formally declared

abstract to allow for incomplete virtual rede�nition.

44 CHAPTER 2. THE PARALLEL TOOLBOX

Class TBaseObject

TBaseObject is the lowest level base class. Every class that is used with the basic container

class TObjectArray should be derived from this class. It declares method stubs for class

naming GetClassName and contents description GetInstanceName. Those names are used

to build a descriptive pre�x prepended to messages (normal, warning, or error) printed to

the terminal.

Class TObject

TObject de�nes all virtual methods stubs for high level simulation objects like encoding,

decoding, event handling, message handling, and active referencing.

Class TObjectID

The base class TObjectID de�nes the ID by which each object will be identi�ed during the

simulation. A new ID will be assigned upon creation of an object which will be kept until

the �nal destruction of the object. An ID once assigned will never be reused. In case an

object is moved from one CPN (source) to another CPN (destination) it will be destroyed

on its source CPN and recreated on its destination CPN with the same ID it had before.

That way all references to its ID will remain valid although its physical location in the

cluster may change.

Class TTransferObject

Simulation objects are central to the design approach described here. They represent those

entities of the simulation that can be transferred to another CPN in the parallel computer

topology. For the computation of the load of subnet consisting of transfer objects the

method GetLoadEstimate has to be overloaded which returns a value proportional to the

load of this computational requirements of this object in arbitrary units.

Classes derived from TTransferObject will also take an active part in the simu-

lation update. Therefore the class provides virtual methods PrepareTimeStep and

ExecuteTimeStep.

2.8.2 Classes TSimulationSlave and TApplicationSlave

TSimulationSlave is the topmost object in the simulation hierarchy. The class must be

overloaded by an application dependant class called TApplicationSlave. There is one

instance on each CPN that has pointers to one instance of TSuperGraph de�ning the local

subnet computed by the CPN and TMessageControl providing the communication interface

to PVM. After startup it will take care of initialization of local data structures. Then it will

enter the main loop which checks TMessageControl whether new messages have arrived

and process them. It will only leave this loop at the end of the simulation.

2.8. IMPORTANT CLASSES 45

The duties of TSimulationSlave can be summarized as follows:

� Handle the topology of the local subnet through TSuperGraph.

� Handle the simulation objects residing on the local subnet (also through

TSuperGraph).

� Provide statistics of the subnet.

� Perform local load balancing.

2.8.3 Classes TSimulationMaster and TApplicationMaster

The class TSimulationMaster is a child of TSimulationSlave. It must be overloaded

by an application dependant class called TApplicationMaster. There is only CPN in

the parallel topology that has a TSimulationMaster instead of a TSimulationSlave. In

addition to the latter it has another pointer to an instance of TSuperGraph comprising the

whole simulation network.

The duties of TSimulationMaster can be summarized as follows:

� Read in network data or create a arti�cial network.

� Distribute the network onto available CPNs.

� Provide a interface to control the course of the simulation.

� Gather global statistics.

� Provide a graphical user interface.

� Control deletion and insertion of CPNs.

� Later: perform global load balancing.

2.8.4 Classes TBaseNode and TApplicationNode

The overloaded methods of TApplicationNode de�ne the functionality of a node of

the simulation network. The instances of TApplicationNode (together with those of

TApplicationEdge combined in a graph represent the simulation network itself. TBaseNode

is derived from TTranferObject to enable it to be transferred and compute part of the

simulation.

TBaseNode has a geometric location of type TLocation and handles a list of all its incedent

edges in a TDLList<>.

46 CHAPTER 2. THE PARALLEL TOOLBOX

Application Node Functionality Edge Functionality

CA demo (circle) none, except simple CA

local boundaries

CA demo (net) random distribution simple CA

Grid Extension subgrid none, except

except de�nition of boundary dependencies

TRANSIMS tra�c lights + queues intelligent CA

Table 2.3: Node And Edge Functionality

2.8.5 Classes TBaseEdge and TApplicationEdge

The function of TBaseEdge and TApplicationEdge is equivalent to the that of TBaseNode

and TApplicatioNode: the overloaded methods of TApplicationEdge de�ne the function-

ality of an edge of the simulation network. The instances of TApplicationEdge (together

with those of TApplicationNode combined in a graph represent the simulation network

itself. Note that there does not have to be any real edge functionality as well as there

does not have to be any node functionality

10

. The table 2.3 shows an overview of the classes

in di�erent applications.

TBaseEdge is derived from TTranferObject to enable it to be transferred and compute

part of the simulation.

But in one respect edges are special: in case an edge goes from one CPN to another it

will be split in halves. For that reason each edge has an active range [a; b] where a is

associated with its �rst (from) node and b with second (to) node. The table B.1 gives an

overview over the di�erent combinations of a and b. For the time being edges are only cut

in the middle so that the split point s

p

is always 0:5.

TBaseEdge provides method stubs to de�ne the behaviour of the edge in case it func-

tions as a boundary edge. This also includes a method to generate an object of type

TApplicationBoundary into which all boundary data is encoded. The boundary ranges

for from{boundaries and to{boundaries with a given boundary width of b

w

are also con-

tained in the table.

Note that although TBaseEdge is said to have from{node and a to{node this does not imply

that object movement (is there is any) is only meant to follow that direction. If the edge

represents a street segment it is the reponsibility of TApplicationEdge to provide both

logical directions.

2.8.6 Class TGraph(Primitive)

The class TGraphPrimitive handles a graph constisting of instances of TBaseNode and

TBaseEdge de�ning the simulation network. It is derived from TBaseNode enabling it to

10

of course, either has to have at least some functionality

2.9. ADVANCED TOPICS 47

be node in a supergraph itself. Moreover it has a geometric location which is computed as

the center of mass of all its nodes. Methods like PrepareTimeStep or ExecuteTimeStep

result in the successive calls of the equivalent methods of all its nodes and edges.

The template TGraph<> is used with the user supplied classes TApplicationNode and

TApplicationEdge in order to provide automatic generation of nodes and edges.

2.8.7 Classes TSuperGraph(Primitive) and TGraphEdge

The class TSuperGraphPrimitive operates on graphs of type TGraphPrimitive derived

from TBaseNode) and graph edges (of type TGraphEdge derived from TBaseEdge) instead

of the base classes themselves. It represents the CPN topology as a graph of graphs since

the CPNs are arranged in a graph and each CPN holds a local subnet which is a graph in

itself.

The class TGraphEdge connects graphs; that is, nodes in a supergraph. The instance

of TGraphEdge between CPNs A and CPN B holds a list of all boundary edges of type

TApplicationEdge going from A to B. The existance of graph edge is equivalent to the

existance of at least one boundary edge.

The template TSuperGraph<> is used with the user supplied classes TApplicationNode

and TApplicationEdge in order to provide automatic generation of nodes and edges.

2.8.8 Classes TBoundary and TApplicationBoundary

The class TBoundary serves as a container to transfer boundary information between CPNs

in case of external boundaries or between edges and node in case of internal boundaries.

2.9 Advanced Topics

2.9.1 Talk Mechanism

The talk mechanism provides a means to perform a locally synchronized exchange of data.

This is mainly needed for network transfer during dynamic load balancing since the time

steps of the sending and the receiving CPNs have to match. A talk between CPN A from

which the it originates and CPN B answering it goes like this:

1. A calls the method RequestTalk of TSimulationSlave passing three parameters:

� the ID of the other CPN,

� the TalkID, a unique number by which the 'topic' to be talked about is identi�ed,

� a �T relative to the current time step T

now

after which the talk is to be estab-

lished.

48 CHAPTER 2. THE PARALLEL TOOLBOX

2. A continues execution until the requested time step T

talk

= T

now

+�T is reached. In

between B has received the talk request. It also continues execution.

3. A and B have reached the same time step T

talk

. The method Talk of

TSimulationSlave on A is called with the chosen TalkID and an instance of

TTalkInfo.

4. A starts talking to B in a ping pong manner until either of them cancels the talk.

5. Both continue their normal operation.

There are some aspects which need special attention:

� If both CPNs request equivalent talk requests with the same TalkID and for the same

e�ective time steps a collision occurs. In that case one of the talk requests is canceled

by the system using the IDs of the CPNs and the time step to determine which one.

� A CPN might issue more than one request for the same time step with more than one

CPN using one or more talk Ids. In such a case no assumption can be made in which

order the talks are initiated except that requests for the same time step with the same

CPN and di�erent talk IDs are handled exactly in the order they were requested.

� There is only one active talk at a time.

� During the talk neither of the CPN performs any computation. Therefore it should

be the goal of the talk protocols to be as short as possible.

2.9.2 Memory Management

For all objects that are likely to change CPNs (such as TDriver, TVehicle or TRoute)

optimized allocation (getmem) and deallocation methods (free) will be supplied to keep

administrive overhead as small as possible. Free memory for instances of these objects

will be handled in arrays with lists linking the free entries. Dynamic memory allocation

will only be neccessary if the number of objects of a given type temporarily exceeds the

estimated maximum number of array entries.

2.9.3 Changing Load Balancing Behaviour

A change of load balancing behaviour of the simulation can be achieved by

� overloading the methods GetLoadEstimate in TBaseNode and TBaseEdge and

� overloading the method SelectLoadToBeTransferred in TSimulationSlave.

Whereas the �rst part should always be done by any application to garantee a decent load

balancing, the second part is considerably more di�cult and requires a new load balacing

algorithms to replace the ones builtin.

2.10. PROBLEMS 49

2.9.4 Changing Topology Transfer Behaviour

A change of topology transfer behaviour is done by overloading either the method

SelectBestNodeToBeTransferred or the method SelectTopologyToBeTransferred of

TSimulationSlave.

In the �rst case the selection of topology would still be iterative; that is, one node to

be transferred is selected at a time and after each selection the con�guration has to be

evaluated again.

In the second | more complicated | case it is possible to provide a completely di�erent

selection method possibly selecting the whole subnet to be transferred at once.

2.10 Problems

2.10.1 Granularity

Boundaries will be located in the middle of segments to avoid the complex behaviour and

references close to nodes. Nevertheless the point where a segment is split is only indepedent

of the associated nodes if the segment is twice as long as vision range. This reduces the

potential number of segments that are suited for the placement of a boundary considerably

and thus creates a coarser grid for load balancing.

2.10.2 Synchronization

Weak synchronicity between CPNs is neccessary in a time step driven system, meaning

that almost equal execution times are desirable on all CPNs, but no master clock forcing

strong synchronicity.

During the �rst tests in turns out that at least in a local area network synchronicity should

only be reached to a certain exactness since the more synchronous the CPN run the more

focussed communication becomes, which can only be handled sequentially. So it might be

advantageous to actually force a little slack of synchronicity between the CPNs in order to

smoothen network communication.

2.10.3 Scalability

Although the microsimulation part itself scales well with the number of CPNs provided

11

there are several aspects that scale only poorly:

� Processing of the input data is done by the master CPN. This also results in a severe

disparity of memory requirements since the whole network has to be stored to execute

the load balancing.

11

This only applies to parallel computer hardware that provides simultaneous local communication scaling

with the number of CPNs

50 CHAPTER 2. THE PARALLEL TOOLBOX

� Graphics output is handled by a single CPN.

� Global actions such as gathering statistics or command dispatch triggers dense cas-

cades of local and/or global communication. This will especially a�ect workstation

clusters where communication between any pair of CPNs is always sequential.

2.10.4 Fault tolerance

For the time being the toolbox does not provide any mechanism to recover or even resume

a simulation after a fatal crash of one of the CPNs and/or other hardware components.

It should be possible to provide a Dump method prompting all objects to dump their current

state to a disk �le. Together with a dumped representation of the network structure and

distribution handled by the toolbox the state of the simulation could be restored again.

The maximum possible loss would be the computation done between two subsequent dumps

which will probably in the order of minutes versus a computation time of hours.

2.11 Coming Up Soon

These features should be implemented pretty soon:

Local load balancing on complex networks This will be done and tested in several

steps:

� planar homogenous nets

� non{planar homogenous nets

� autobahn network

� city network

Port to Paragon The Paragon will serve as the �rst dedicated parallel system that the

toolboy will be tested on.

Time dependence of e�ective load history The mechanism used to determine the ef-

fective performance of a node in a local area network is still based upon a history

measured in time steps. This will be changed to wall clock time. At the same time

the syntax extension of PVM host�le will be adapted to allow for di�erent history

length for individual CPNs.

2.12 Outlook

2.12.1 PMI

It might be possible to port the Parallel Toolbox to the new standarized Parallel Message

Passing Interface. Since it is supposed to provide an equivalent super set of all features

2.12. OUTLOOK 51

of PVM and since the toolbox only uses a subset of all PVM features the port should be

pretty easy

12

.

2.12.2 Shared Memory

In contrast to the port to PMI which only replaces an existing interfaces with another

maintaining the old restrictions a port to shared memory could be a real enhancement of

the Toolbox: one of the major disadvantages of message based simulations is a restricted

horizon; that is, a restricted availability of data residing on a remote CPN. In case of a

simulation with a sometimes large range of causality (see 2.3) like a tra�c simulation this

horizon leads to de�nitive decrease of �delity.

On shared memory systems a global address space by all processors executing the simulation

in well de�ned threads. All requests referring to all other objects can be resolved with a

delay which is almost equivalent with conventional single processors memory access.

It would be a good idea to port the Toolbox and the Toolbox based applications to a shared

memory system in three steps:

1. In the �rst step the shared memory implementation would be implemented in such a

way that it emulates the message based system. The application would not have to

be modi�ed.

2. Then additional features are added which are only possible in global address space.

This mainly refers to application itself. It should be possible to run the simulation in

two modes and compare performance. This also permits to investigate the interesting

question whether the limited horizon due to message passing really produces di�erent

result or whether this is simply an assumption of users feeling uneasy about a limited

view restricting their potential to reason about how to make objects react in the

simulation.

3. If shared memory systems are widely available the application and possibly the Tool-

box could be freed of the old message passing aspects.

12

Any volunteers?

� �

^

52 CHAPTER 2. THE PARALLEL TOOLBOX

Chapter 3

How To Use The Parallel Toolbox

3.1 Building an Application Framework

To write and run a new application based upon the Parallel Toolbox follow these steps:

1. Install PVM if neccessary.

2. Install the Parallel Toolbox and the Grid Extension.

3. Create a subdirectory for your application called myapp. Create a subsubdirectory

myapp/PVM ARCH. Use touch to create the �le .depend in that directory. Copy

the AppMake�le from the subdirectory frame to myapp. Create a logical link from

Makefile to ../MyAppMakefile.

4. Copy the following dummy �les from the frame subdirectory into the myapp subdi-

rectory and rename App into MyApp in each �lename. Note that all �lenames in table

3.1 are relative to $CHOME.

5. Modify the �les and adapt them to your needs by supplying methods overloading the

builtin default functionality.

frame �le application �le

frame/AppMakefile myapp/MyAppMakefile

frame/AppTemplates.C myapp/Templates.C

frame/App.C myapp/MyApp.C

frame/Slave.C myapp/MyAppSlave.C

frame/Master.C myapp/MyAppMaster.C

frame/Node.C myapp/MyAppNode.C

frame/Edge.C myapp/MyAppEdge.C

frame/Boundary.C myapp/MyAppBoundary.C

Table 3.1: Files of the Grid Application Framework

53

54 CHAPTER 3. HOW TO USE THE PARALLEL TOOLBOX

6. Compile and link your program by entering the myapp/$PVM ARCH directory and typing

Make.

7. Create a logical link from

/pvm3/bin/$PVM ARCH/MyApp to $CHOME/myapp/$PVM ARCH/MyApp or create a shell

script �le /pvm3/bin/$PVM ARCH/MyApp calling $CHOME/myapp/$PVM ARCH/MyApp. If

your do the latter you have the option to call your application using nice -level.

Don't forget to give the script execute permission by typing

chmod +x /pvm3/bin/$PVM ARCH/MyApp

8. Run your application (see 3.7).

3.2 Overloading Methods

The main idea of de�ning an interface using an object oriented language is o�ering virtual

method stubs which can/must be overloaded by methods provided by the user. With

respect to traditional programming in which the user both inuenced the in which functions

were called and the functionality, the user now only provides functionality for a task and

leaves calling of the methods to the toolbox. Depending on the desired e�ect there are

di�erent options on how to overload a method:

� A method is not overloaded: This usually implies that the method stub has a builtin

default functionalilty which meets the needs of the user.

� A method is overloaded, the ancestor method is not called: the user completely re-

places the functionality of the builtin method.

� A method is called and the ancestor method is called: this is a very frequent case in

which the user extends the functionality of original method. There might be restric-

tions as to when the ancestor method is called: at the beginning of, at the end of, or

at anytime during the execution of the overloaded method.

In the appendix you will �nd descriptions of the most important methods of the toolbox.

If there are any restrictions or requirements as far as the overloading is concerned they will

be mentioned in the appropriate Overload subsection of the description.

3.3 Simulation Control

The method SimulationControl in class TSimulationMaster is the central method to

inuence the execution of the simulation. As mentioned before the master also functions as

a slave during a simulation sequence. Before the �rst sequence and between two sequences

the master is the only acting CPN (see 3.1). This is used to initialize the simulation, start

statistics and start simulation sequences. It is also used to terminate the simulation.

3.3. SIMULATION CONTROL 55

master is master master is slave

receive acknowledge send acknowledge

sequence finished?

receive boundaries

send boundaries

SimulationControl

initialize

ControlStep++

last ControlStep?

cs=0 cs>0

yes
no

no

yes

receive sequence
command

StartSequence

ControlStep = 0

execute timestep

Figure 3.1: Master and Simulation Control

3.3.1 Initializing

All initialization of the slave and the master should

be done in the constructors TMyAppSlave(TMessageControl &theMessageControl) and

TMyAppMaster(TMessageControl &theMessageControl) which have to be provided. Ini-

tialization that cannot be done in a constructor should be done by overloading StartSlave

or StartMaster respectively.

3.3.2 Generating a Network

A simulation network consisting of instances of TApplicationNode and TApplicationEdge

is generated by instantiating the nodes and edges and adding them to the GlobalNet pro-

vided as local variable in TSimulationMaster. The class TSuperGraph provides to methods

Add(TBaseNode *aNode) and Add(TBaseEdge *anEdge) to add the elements. Note that

56 CHAPTER 3. HOW TO USE THE PARALLEL TOOLBOX

an edge can only be inserted into the net after both adjacent nodes have already been

added. Otherwise there will be error during the update of the incedence list of either node.

Note that during the creation of the simulation network you do not have to consider the

upcoming distribution of the network. You are allowed to regard the simulation a single net

without boundaries. Afterwards the method DistributeAndActivateNet should be called

taking care of distribution and similar tasks to prepare the system for the �rst simulation

sequence.

3.3.3 Activating Load Balancing

The method ActivateLoadBalacing is used to activate the load balancing mechanism.

3.3.4 Activating Statistics

If a statistics object has properly been de�ned and handled through overloading

methods in TSimulationSlave and TSimulationMaster (see 3.4) the master method

StartStatistics can be used to activate the polling mechnism for a speci�c StatID.

3.3.5 Initiating a Simulation Sequence

The master method StartSimulationSequence can be used to initiate a sequence of time

steps in which all slaves (and the master as slave) compute the simulation. The main

parameter is the length of the sequence. When choosing this number one has to consider

the following tradeo�:

� Keeping the number large reduces the frequency of global synchronizations which

usually to not scale very well. Thus large numbers probably improve the performance

of the simulation.

� Keeping the number small improves the response time of the simulation. Some in-

cidents (e.g. the deletion of a CPN) require global synchronization which is needed

very fast after the occurance. Thus small numbers probably improve stability of the

simulation.

There is an additional parameter SequenceID by which the slave can distiguish between

di�erent types of sequences.

3.3.6 Terminating the Simulation

The simulation is terminated by setting the Quit parameter in SimulationControl to

TRUE.

3.4. GATHERING STATISTICS 57

3.4 Gathering Statistics

The Parallel Toolbox supplies a mechanism to request statistitical data from each CPN.

The user can de�ne as many statistics as desired by di�erentiating them through an integer

ID called StatID. There are two criteria describing the way the statistics are gathered:

local statistics versus global statistics In case of local statistics statistical data is

requested from each CPN and broadcast to all its neighbours. As soon as a CPN has a

complete set of statistics from its neighbours either of the methods HandleStatResult

or HandleMultiStatResult is called with the StatID and the statistical infos as

parameters.

In the case of global statistics all slaves (including the master functioning as slave)

are prompted to send their statistical data to the master. As soon as the master has a

complete set of statistics from its neighbours either of the methods HandleStatResult

or HandleMultiStatResult is called with the StatID and the statistical infos as

parameters.

multi statistics versus single statistics In case of multi statistics each info received

from the CPNs (either all slaves or all neighbours) is stored individually in an array

structure which is passed through the method HandleMultiStatResult. There is

no automatics aggregation done. The idle time information, for example, is a multi

statistics because the individual idle time of each neighbour is important.

In case of single statistics the �rst info received will stored. Any further info will

be combined with the �rst info using the overloaded method Add which has to be

supplied by the user. After aggragation the second info is disposed. The result is a

single statistics info which is passed through HandleStatResult.

Because of order of aggregation is not known to the user the operation add has to be

both associative and commutative. If A, B, and C represent statistic infos and � the

operation this is equivalent to:

(A �B) � C = A � (B �C) and A �B = B �A

In order to use the statistics feature follow these steps:

1. Declare a descendant TMyStatObject of the class TStatObject provided in TStat.h

and overwrite the methods Decode and Encode, and in case of a single statis-

tics also the method Add. Provide a trivial contructor TMyStatObject(void) and

TMyStatObject(int StatID) which both initialize all local variables of the instance.

Initializedmeans in particular that the instance should act the null-object with respect

to the operation Add.

2. Declare an ID for this statistics by choosing an integer value starting at

SC StatID FirstFreeID. In case of the Grid Extension Application choose a value

starting at Grid StatID FirstFreeID.

58 CHAPTER 3. HOW TO USE THE PARALLEL TOOLBOX

3. Overload the method TSimulationSlave::CreateStatObject creating instances of

the statistics object.

4. Overload the method TSimulationSlave::Handle(Multi)StatResult to handle the

statistics results.

5. Insert a call to ActivateStatistics in your SimulationControl method in your

derived class of TSimulationMaster.

6. Check the detailed description of these methods in B.

3.5 Graphics

3.5.1 Network Windows

The network window is activated by command line option -x together with the method

OpenGraphics of TSimulationMaster. It displays all edges and nodes in the global graph.

The distribution onto the CPNs is denoted by di�erent shades of grey. The display of the

nodes can be deactivated through command line option -u.

3.5.2 Topology Window

The network window is activated by command line option -x together with the method

OpenGraphics of TSimulationMaster. It displays CPNs as nodes (�lled circles). The area

of the circle of a CPN corresponds to the share of the network that the CPN is computing.

An edge between two nodes is equivalent with the existence of at least one boundary edge

between the subnets on the two CPNs. The �gure printed beside the edges denote the color

of the edge in the context of transfer slots.

3.5.3 Views

A view represents an excerpt of the network activity at a high level of detail. At the=)

new in

0.9.5

moment there are two ways to activate a view:

� a static view is �xed at a certain location to monitor the simulation ac-

tivity in that region. It is started on the master by creating a new

instance of class TView and registering it with the master view manager

through TViewManager::AddView. The master view manager can be retrieved

from the graphics manager TSimulationMaster::GraphicsManager by calling

TGraphicsManager::GetViewManager. The view is active until it is removed through

TViewManager::RemoveView.

� a dynamic view is �xed to a certain object and will follow this object as the simu-

lation proceeds. It can be started on any slave (including the master) by calling the

3.5. GRAPHICS 59

CPN 0 CPN 1

0

0
1

1

1

0

0 edges in SendEdges of CPN 0

1 edges in SendEdges of CPN 1

Rectangle

CPN boundary

TView

TBaseEdgeList SendEdges;

TRectangle Rectangle;

Figure 3.2: TView On Slaves

method TViewManagerSlave::TraceObject of the local view manager slave which

can be retrieved from the slave through TSimulationSlave::GetViewManagerSlave.

The view is active until the method TViewManagerSlave::UntraceObject is called.

Note that this can be on a di�erent slave than the one the trace was started on.

To use the view facility several class methods have to be overloaded. These shall be

described by looking at the steps neccessary to retrieve the draw data from the slaves and

display it on the master.

Retrieving Data on the Slaves

� The slave calls TViewManagerSlave::SendViewData for each view.

� SendViewData goes through the local list of edges

1

that contain data visible in the

current view rectangle.

� For each edge the view calls the overloaded method EncodeViewData which encodes

all data of the current time step into the message which is passed as a parameter.

Note that the data format is completely free since there is a symmetric overloaded

method DecodeViewData which is called on the master.

1

So far the current view facility only works properly for edges. Nodes will be added later.

60 CHAPTER 3. HOW TO USE THE PARALLEL TOOLBOX

Receiving Data on the Master

� The master receives view data from a slave.

� It decodes the view ID and passes the event to the selected view.

� The view decodes the time step ReceiveTimeStep of the data. Then it compares

the ReceiveTimeStep to the current DrawTimeStep and increases DrawTimeStep so

that it is VIEW DRAW DELAY time steps behind behind the maximum time steps stored

for that view. This slack is neccessary to allow for slower CPNs contributing to the

display to send their data.

� The view decodes a reference for an edge, retrieves an pointer to the edge and calls

DecodeViewData. It passes itself and the incoming message as parameters. Moreover

it checks whether is has to add the add to its list DrawEdges.

The edge has a local variable of class TViewDataHandler through its decendency from

TViewDrawObject

2

. This data handler can be used to store pointers to the decoded

data.

{ First the edge uses the method TViewDataHandler::GetViewData to check

whether there has already been data decoded for that time step. Note that the

method DecodeViewData is called twice if the edge is a boundary edge receiving

data from two CPNs.

{ If so (pointer not 0) it adds the new data to the existing using the old pointer.

If not it should create an instance of a class caplable of holding the new data.

This class should be derived from TBaseObject with a virtual destructor so that

automatic destruction (and thus memory deallocation) is possible.

{ If the pointer has changed or the old pointer was null the edge uses the method

TViewDataDandler::SetViewData to store the pointer.

Displaying Data on the Master

� The master calls (through the GraphicsManager) the method TViewManager::Draw

passing a pointer to a customized instance of TViewDrawContext.

� The view manager walks through its views and calls TView::Draw for each view pass-

ing the draw context.

� Each view adds a reference to itself to the context and walks through the edges in

DrawEdges and calling �rst DrawViewBackground and second DrawViewForeground.

Moreover it checks whether an edge has not received any draw data for more than

VIEW DRAW DELAY time steps. If so that edge is removed from the list DrawEdges.

� Each edge uses the method TViewDataHandler::GetViewData to retrieve the data.

If the pointer is 0 it simply returns.

2

which also supplies the stubs for encoding and decoding

3.6. USING COMMAND LINE OPTIONS 61

0

1

Rectangle

TView

TBaseEdgeList DrawEdges

TRectangle Rectangle;

TTimeStep ReceiveTimeStep;

TTimeStep DrawTimeStep;

received from CPN 0

received from CPN 1

0

0
01 1

1

Figure 3.3: TView on the Master

3.6 Using Command Line Options

There are up to four classes trying to interpret the options provided on the com-

mand line: TMessageControl, TSimulationMaster, TGridMaster and the used supplied

TApplicationMaster. The user can use any option letter which is not used by any other

of the classes involved

3

by doing the following:

� Overload the method InterpretOption of TSimulationMaster in which you are

asked to interpret options.

� Pass a list of your potential options as parameter to the StartMaster method of

TSimulationMaster. The format of the option string is described in the manual page

of getopt(3).

3.7 Running the Simulation

3.7.1 Con�guring Your System

Since version 0.9.7 it is required to install two scripts TExecute and TExecute.tcsh which (=

new in

0.9.7

are available in the $CHOME/scripts directory. This is usually done by creating the logical

links

3

If the Grid Extension is not used its options are available

62 CHAPTER 3. HOW TO USE THE PARALLEL TOOLBOX

Option Class Description

-b<number> GM Sets interval between updates of the bitmap to number time

steps. If number is zero the bitmap is deactivated.

-c<number> MC Sets number of dedicated nodes to number.

-g<number> GM Sets the number of grid node rows and columns to number

-G<name> MC Activates debugging for CPN name

-h<filename> MC Sets �lename of PVM{host�le.

-m<kb> MC Sets maximum message length to kb kilobytes.

-N<number> SM Sets nice level to number

-o<number> GM Sets the number of grid point rows and columns

per grid node to number

-p<filename> SM Playback load transfer data stored in �le <filename>

4

-u<sec> SM Suppresses plotting of nodes

-U<timesteps> SM Activates communication check and sets interval to timesteps

-r<mode> SM Sets PVM routing mode to mode

-v<number> SM Sets maximum number of views

-w<sec> SM Sets communication timeout

-x SM Activates X-Windows graphics

GM: TGridMaster in Grid Extension

MC: TMessageControl

SM: TSimulationMaster

Table 3.2: Prede�ned Toolbox Commandline Options

ln -s $CHOME/scripts/TExecute $HOME/pvm3/bin/$PVM_ARCH

ln -s $CHOME/scripts/TExecute.tcsh $HOME/pvm3/bin

Note that the �rst link has to be duplicated for each PVM architecture being used. The

script TExecute contains a list of possible locations containing the shell tcsh. If the path

to the shell on your system is di�erent, please add it to the list.

3.7.2 Using and Troubleshooting PVM

3.7.3 Dedicated Parallel Machine

3.7.4 Architecture of the Intel Paragon

The nodes on an Intel Paragon mainly are of two types: the service nodes and the=)

new in

0.9.5

compute nodes. Although both types feature the same processor hardware and the

same amount of memory (at least in J�ulich (FRG)) their performances and duties di�er

considerably. The service nodes serve as the connection to the LAN of the institute and

supply the main storage media. They also have a fulledge UNIX operating system capable

of supplying an interactive user environment. The compute nodes on the other hand

3.7. RUNNING THE SIMULATION 63

only have a restricted UNIX operating system for running applications linked with special

proprietary libraries. They supply the actual computational power of the system since they

are interconnected via a highly sophisticated communication network.

Communication between service nodes and compute nodes is supposed to be rather slow.

Moreover the service nodes are shared by all users running applications on the paragon so

that load level is very high at certain peak levels during the day. The problem is now that

the current version of PVM start the master process on a service node, but subsequently

spawns all slaves on compute nodes. This is very unfortunate since the toolbox usually

assigns some topology to the master process, since it would be running idle otherwise most

of the time. Therefore there is a need to supply a switch for the Paragon which prohibits

the master to take part in the computation of the network. This switch will be implemented

in one of the next versions of the toolbox.

Running the Application on the Intel Paragon

It is not quite clear whether the steps described here apply to all Paragon systems in general

or whether they are restricted to the installation at the KFA in J�ulich (FRG).

1. Insert the de�nitions for the PVM ARCH=PGON and PVM ROOT= /pvm3 environment vari-

ables into your .cshrc or .profile. Note that the architecture path does not point

to the system directory sub tree where the PVM binaries like pvm or pvmd3 reside,

but to a local directory in your directory tree.

2. Compile the application. The make�le for the Paragon implementation is a somewhat

more complicated than the workstation version since running a applications under

PVM on the Paragon requires two binaries: the master binary linked with libpvm3.a

and the slave binary linked with libpvm3pe.a. The name of the master binary will

be the same as that of the application, the slave binary will have the su�x .slave.

3. Create directories /pvm3 and a script /pvm3/<application>.slave which calls the

slave binary.

4. Create a partition of N nodes with name partname by calling

5

novpart -sz N partname

You will get a subshell which is associated with the new partition.

5. Start the PVM deamon by typing

pvmd3 -sz N -pn partname &

Together with the previous command and a temporary call of the PVM shell (not

neccessary) you will get output looking similar to this:

5

Allocating a partition probably works di�erently on every system. So be careful!

64 CHAPTER 3. HOW TO USE THE PARALLEL TOOLBOX

hkf444@zam158-a.473: novpart -sz 4 pvm

Creating non-overlapping partition "pvm"...

Spawning subshell...

novpart_pvm: pvmd3 -sz 4 -pn pvm &

[1] 4654660

[pvmd pid4654660] using 4 nodes

7f000001:0475

novpart_pvm: pvm

pvmd already running.

pvm> conf

1 host, 1 data format

HOST DTID ARCH SPEED

zam158-a 40000 PGON 1000

pvm> quit

pvmd still running.

novpart_pvm:

6. Start your application supplying the mandatory option -c possibly followed by other

options:

myapp -cN <other options>

Note that N is again the number of nodes in the allocated partition. The reason for

this is somewhat strange: PVM only has a host con�guration which assumes that

every host (even the Paragon!) has exactly one processor. There is no function in

PVM allowing to query the number of processors of a given host. Therefore although

the deamon knows about the partition size you still have to supply the option! There

is no way to �nd out about the number of processors by causing a controlled error

while spawing slave number N + 1 since the system alledgedly crashes immediately

while doing so. And on the Paragon a crash in one partition might corrupt the whole

system!

3.7.5 Local Area Network

Do the following steps to prepare your local area network environment for running the

application:

1. If not done yet, create a hostfile in your home directory and con�gure it for all

machines in your LAN.

2. Start the PVM shell.

3. Add hosts to your CPN network.

4. Leave the shell.

3.8. DEBUGGING THE SIMULATION 65

5. Change directory to $CHOME/myapp/$PVM ARCH and start the application using all

desired command line options.

3.7.6 Dynamic Insertion of CPNs

Follow these steps to dynamically insert a new CPN:

1. Enter the PVM shell.

2. Add the CPN.

3. Leave the shell.

3.7.7 Dynamic Deletion of CPNs

At the moment there is no simple way to delete a CPN from the CPN topology. Deleting

a CPN in the PVM shell kills the deamon on that CPN which causes the application to

crash! Instead to the following:

1. Log into the machine which corresponds to the CPN in question.

2. Use the unix command ps to determine the process ID PID of the application process.

Note that you usually can use grep to �lter out entries which contain the program

name.

3. Type kill -SIGHUP PID.

3.8 Debugging the Simulation

3.8.1 Debugging the master process

To debug the master process simply start the application using a debugger. For example:

mr@casimir [~/c/periodic/LINUX]$ gdb periodic

GDB is free software and you are welcome to distribute copies of it

under certain conditions; type "show copying" to see the conditions.

There is absolutely no warranty for GDB; type "show warranty" for details.

GDB 4.13 (i486-slackware-linux), Copyright 1994 Free Software Foundation, Inc...

(gdb) break TPeriodicMaster::Simulate

Breakpoint 1 at 0x5fbd7: file ../TPeriodicMaster.C, line 458.

(gdb) run -s5000

Starting program: /vol/home/mr/c/periodic/LINUX/periodic -s5000

Program::Main() START

| TMessageControl(HOST?): master display is 'casimir:0.0'

66 CHAPTER 3. HOW TO USE THE PARALLEL TOOLBOX

| TPeriodicMaster(HOST? TS:0): systemlength set to 5000.000000 [km]

| TPerformance(): statistics file 'PerfStat' opened (300.000000 second intervals)

| THardwareInfoManager(/home/mr/hostfile): reading hostfile...

| THardwareInfoManager(/home/mr/hostfile): 4 info(s) read

| TMessageControl(HOST?): This is the Parallel Toolbox Version 0.9.6 dated 04-24-95 compiled with GNU C++...

| TMessageControl(HOST?): Retrieving initial PVM topology...

| TMessageControl(HOST?): PVM reports 1 architecture(s) on 2 host(s)

| TMessageControl(4001C, casimir): Spawning 1 slave(s) 'periodic' on speedy.

[t180009] BEGIN

[t180009] TExecute periodic casimir:0.0

[t180009] Program::Main() START

| TMessageControl(4001C, casimir): Hello world!

| TPeriodicMaster(casimir TS:0): This is the Periodic Multi Lane CA demo dated 04-27-95 ...

| TPeriodicMaster(casimir TS:0): SystemLength: 5000.000000 [km]

[t180009] | TMessageControl(180009, speedy): Hello world!

[t180009] | Warning(0) in TMessageControl(180009, speedy): timeout after 10.000000 [seconds]

[t180009] | Warning(0) in TPeriodicSlave(speedy TS:0): TSimulationSlave timeout!

[t180009] | TPeriodicSlave(speedy TS:0): waiting for 2 boundary edges.

[t180009] | TPeriodicSlave(speedy TS:0): OK: message received!

Breakpoint 1, TPeriodicMaster::Simulate (this=0xa0800) at ../TPeriodicMaster.C:458

458 FILE *StatFile = 0;

(gdb)

3.8.2 Debugging a slave process

The command line option -G<hostname> activates debugging for all slave processes started=)

new in

0.9.7

on the host speci�ed by hostname. So far there is no mechanism to select a speci�c process

on a speci�c slave. There may be more than one -G option given on the command line.

Make sure that the environment variable HOSTDISPLAY is set to the XWindows display that

the debugging session is being run on! If there are hosts in the PVM topology which do

not belong to the local domain the whole name has to be given (e.g.):

export HOSTDISPLAY=faure.tsasa.lanl.gov:0.0

After start of the application the master process will begin spawning slave processes. When-

ever a slave process is on one of the speci�ed hosts an instance of the selected

6

debug tool

will appear on the screen. Start the application by typing run (or whatever neccessary)

after optionally setting break points. Please, note that the master process is blocked until

you start the execution of the slave process. This is due to the protocol between master

and slaves.

6

so far only xterm with gdb/dbx is available

3.9. THE ZPR MICRO SIMULATION 67

Option Description

-A<speed> sets maximum velocity of slow vehicles to speed.

-B<speed> sets maximum velocity of fast vehicles to speed.

-D<prob> sets deceleration probability to prob.

-L activates dynamic load balancing BEWARE!.

-R<ratio> sets ratio of slow vehicles to ratio.

-S<ratio> sets input scale to ratio (default is 1.0).

-d<density> sets overall density of vehicles to density

-l<number> sets number of lanes (both directions) to number.

-t<length> selects thesis input format (default is TRANSIMS input format).

Table 3.3: ZPR Micro Simulation Command Line Options

During a begugging session all output from a debugged slave process that would usually

go to the master process will appear on the appropriate debugging tool.

After the application has been terminated on the debugged slave processes the debugging

tools will remain active. You will have to close them manually, usually by klicking or typing

quit.

3.9 The ZPR Micro Simulation

3.9.1 Command Line Options

The syntax of the ZPR micro simulation is:

MicroSim [options] mapbasename

where mapbasename will be appended the su�ces .nod for the node �le and .edg for the

edge (segment) �le. The following command line options can be used in addition to those

described in 3.6.

3.10 The CA Demo With Periodic Boundary Conditions

3.10.1 Command Line Options

The following command line options can be used when invoking the CA demo in addition

to those described in 3.6.

68 CHAPTER 3. HOW TO USE THE PARALLEL TOOLBOX

Option Description

-A<speed> sets maximum velocity of slow vehicles to speed.

-B<speed> sets maximum velocity of fast vehicles to speed.

-C<prob> sets lane changing probability to prob.

-D<number> sets number of decay steps per density number.

-E<bitmask> activates reduced gap for lanes given by bitmask

-L<number> sets number of lanes (clockwise) to number.

-O<number> sets number of sites to look back.

-R<ratio> sets ratio of slow vehicles to ratio.

-S activates symmetric lane changing rule set.

-T<number> sets number of simulation steps per density number.

-a<density> minimum density used for initial random distribution of vehicles

-b<density> maximum density used for initial random distribution of vehicles

-e<length> edge length in kilometers

-i<number> number of density intervals

-l<number> sets number of lanes (anti clockwise) to number.

-o<name> activates statistics and sets statistics �lename to name

-p activates multi statistics (for each density)

-q activates scatter statistics

-s<length> length of the circular demo network in kilometers

Table 3.4: Periodic CA Demo Command Line Options

Option Description

-d<density> density used for initial random distribution of vehicles

-n<filename> use network stored in TRANSIMS data �le <filename>

-t<filename> use network stored in thesis data �le <filename>

Table 3.5: Network CA Demo Command Line Options

3.11 The Network CA Demo

3.11.1 Command Line Options

The following command line options can be used when invoking the Network CA demo in

addition to those described in 3.6.

Chapter 4

Toolbox Extension for Rectangular

Grids

4.1 Concept

As described in the previous chapters the Parallel Toolbox can distribute a certain class of

simulations de�ned on a graph. Looking at classical problems de�ned on a grid one sees

that in fact these problems can be transformed onto a graph in a trivial way:

� The grid points of the grid are the nodes of the graph. The iteration rules are equivalent

with the update rule of one timestep in the graph simulation.

� The dependencies between grid points are the edges of the graph. A grid point depends

on another one if it needs the state of point to execute the next time step.

This sounds pretty easy! But wait! Looking at it twice it turns out to be quite an overkill

of structural information: a single grid point with usually 4 or 8 bytes would have one

associated node and up to 4 associated edges

1

. Estimating the memory requirements for

an element at approximately 64 bytes the structural information would outweigh the grid

information by a factor of 50!

So we have to �nd another way to represent the grid in our graph. The solution is quite

simple: instead of using grid points as nodes we use subgrids of a given size. In �gure 4.1

there is a system of 4 by 4 subgrids. Each subgrid is associated with a node and the edges

between the nodes exactly represent the dependencies of the subgrids

2

. Note that after

distribution most of the edges will handle the exchange of internal boundaries while some

will handle the inter{CPN external boundaries. The structures of the internal and external

boundaries, however, are identical.

As far as the size of the subgrid is concerned the user has to consider the following trade

o�:

1

There are 8 neighbours with eight edges, but each edge is shared by two grid points.

2

which are exactly equivalent with the corresponding dependencies of a single grid point

69

70 CHAPTER 4. TOOLBOX EXTENSION FOR RECTANGULAR GRIDS

rectangular

periodic (d+r)

diagonal

grid nodes

sub grid

grid edges

boundaries
read

write

Figure 4.1: De�nition of a Subgrid

� On the one hand the subgrid should be as large as possible because computation is

very e�cient on large data segments. Moreover structural overhead is reduced and

thus the relative number of boundaries.

� On the other hand load balancing will be done in units of subgrids. So choosing the

subgrids small will actually enhance performance on a system in which dynamic load

balancing is neccessary.

4.2 Structure of The Grid Extension

The idea of the Grid Extension is to prede�ne as many descendants of Parallel Toolbox

classes as possible to relieve the user of as much programming work as possible. The �gure

4.2 shows all prede�ned classes. Note that only TMyAppGridSite and TMyAppGridMaster

3

have to be provided by the user.

TMyAppGridSite is class which contains all methods to de�ne the functionality of the grid

point including:

Initialization All initialization that has to be done before the start of the simulation.

3

Actually, if the application does not gather any statistical data, but only creates graphics output,

TMyGridAppMaster is not necessary, either.

4.2. STRUCTURE OF THE GRID EXTENSION 71

only neccessary for statistics

TSimulationSlave

TSimulationMaster TGridSlavePrimitive

uses as template parameter

is father of

TSuperGraph< , >

TObject

TBaseNode TBaseEdge
TBoundary

TStatObject

TGridNode< > TGridEdge< > TGridBoundary< >

TGridMaster< >

TGridSlave< >

TMyAppGridMaster TMyAppStatObjectTMyAppGridSite

part of Parallel Toolbox

provided by Grid Extension

provided by user

Figure 4.2: Prede�ned Decendant Objects Of The Grid Extension

Prepararing a time step We assume that the update step is devided into two sub steps:

�rst each grid point looks at its current state and those of its neighbours and de-

termines its new state for time step t + 1. But it does not update its state because

otherwise its neighbours might already use the new state for their update t ! t + 1.

The new state is stored in a scratch variable.

Executing a time step Now the new state is read from the scratch variable and the

update step is complete.

Gathering statistics There are methods to aggregate statistics de�ned on the character-

istics of the grid point.

De�ning graphics A very simple graphical display is provided in which each grid point

can be assigned a color depending on its current state.

72 CHAPTER 4. TOOLBOX EXTENSION FOR RECTANGULAR GRIDS

frame �le application �le

frame/GridMakefile myapp/MyAppMakefile

frame/GridTemplates.C myapp/Templates.C

frame/GridApp.C myapp/MyApplication.C

frame/TGridAppGridSite.[C,h] myapp/TMyAppGridSite.[C,h]

frame/TGridAppGridMaster.[C,h] myapp/TMyAppGridMaster.[C,h]

Table 4.1: Files of the Grid Application Framework

4.3 How To Use The Grid Extension

4.3.1 Building An Application Framework

You should be vaguely familiar with chapter 3 before you start using the grid extension.

After that follow these steps:

1. Install PVM.

2. Install the Parallel Toolbox and the Grid Extension.

3. Create a subdirectory for your application called myapp. Create a subsubdirectory

myapp/PVM ARCH. Use touch to create the �le .depend in that directory. Copy the

GridMake�le from the subdirectory frame to myapp. Create a logical link from

Makefile to ../MyAppMakefile.

4. Copy the following dummy �les from the frame subdirectory into the myapp subdi-

rectory and rename GridApp into MyApp in each �lename. Note that all �lenames in

table 4.1 are relative to $CHOME.

5. Modify the �les according to comments contained in those �les and the guidelines

described in the next section. Most modi�cations consist of replacing text strings by

other text strings. In two cases, however, additional functionality has to be provided:

� TMyAppGridSite.[C,h] is used to de�ne the functionality of a single grid point.

� TMyAppGridMaster.[C,h] is used to de�ne statistics and simulation control.

4.3.2 De�ning Grid Point Functionality

The main class of the grid simulation is called TMyAppGridSite which is to be derived

from the base class TObject. Although some methods in TObject have to be overloaded

by TMyAppGridSite most methods are not declared virtual but inline for reasons of

performance: due to the simple structure of the simulation topology | namely all grid

points are equivalent | there is no need to implement grid point functionality through class

overloading. Instead the class TMyAppGridSite is used as parameter to most prede�ned

decendant classes of the Grid Extension (see 4.2). To garantee proper compilation and

4.3. HOW TO USE THE GRID EXTENSION 73

Neighbour W

Neighbour SW Neighbour SE

Neighbour E

Neighbour NW Neighbour N

Neighbour S

Neighbour NE

current site

next neighbours

diagonal dependencies

retangular dependendies

column boundary width

row
 boundary w

idth

Figure 4.3: Accessing Nearest Neighbours of a Grid Point

functioning of the grid point the following methods have to be declared and non-trivially

4

de�ned for TMyAppGridSite.

TMyAppGridSite(void)

Description The trivial contructor can be empty or can do some basic initialization.

TMyAppGridSite operator = (TMyAppGridSite &OtherSite)

Description This assignment operator should be used to transfer grid point data

from OtherSite) to the local instance.

bool Decode(TMessage &aMessage)

Description Decode decodes the grid point data from message aMessage.

4

trivial in this context would mean empty function bodies for voidmethods or return TRUE; statements

for bool methods.

74 CHAPTER 4. TOOLBOX EXTENSION FOR RECTANGULAR GRIDS

bool Encode(TMessage &aMessage)

Description Encode encodes the grid point data into the message aMessage.

bool ExecuteTimeStep(TTimeStep TimeStep, TGridNodeInfo &GridNodeInfo)

Description ExecuteTimeStep executes one time step (iteration) of the grid point

possibly using scratch data obtained from the immediately preced-

ing PrepareTimeStep. With the help of GridNodeInfo the current

grid point can access its nearest neighbours through the pointers

Neighbour Direction(GridNodeInfo) where Direction is one out of

N, NE, E, SE, S, SW, W, or NW (see 4.3).

bool Fill(TGridNodeInfo &GridNodeInfo)

Description Fill initializes the grid point at (and only at) the beginning of the

simulation.

bool PrepareTimeStep(TTimeStep TimeStep, TGridNodeInfo &GridNodeInfo)

Description PrepareTimeStep gives the grid point the chance to evaluate its neigh-

bours and store the information neccessary to actually execute | or

rather assume the state of | the current time step.

The following methods have to be declared and non-trivially de�ned if statistics are desired.

Otherwise they can be declared and trivially de�ned.

AddToStat(int StatID, TStatObject *StatObject)

Description AddToStat adds the current grid point to the statistics identi�ed by

StatID accumulated in StatObject.

4.4. PREDEFINED GRID EXTENSION COMMAND LINE OPTIONS 75

bool static bool CreateStatObject(int StatID, TStatObject *&StatObject,

bool &Handled)

Description CreateStatObject creates an empty but initialized instance of the

user de�ned statistics object class TMyAppStatObject derived from

TStatObject. The type of statistics is identi�ed by StatID. If the

ID could be handled Handled is to be set to TRUE.

The following method has to be declared and non-trivially de�ned, if a graphical display

of the grid is desired.

TGridPixel GetPixel(void)

Description GetPixel returns a value in the range of [0; : : : ; 255] representing the

color in which this point shall be displayed.

4.3.3 Simulation Control

For a grid simulation with graphics the class TGridMaster need not be overloaded. In

case statistics are desired, however, there has to be a derived class TMyAppGridMaster

overwriting the methods SimulationControl. See 3.3 for a detailed description of this

method.

The �rst control step used by the overloaded method should be

GridMaster CS StartSequence. Note that the ancestor method supplies control steps

for general initialization so that only the statistics are left to be started.

4.4 Prede�ned Grid Extension Command Line Options

See table 3.2.

4.5 Game of Life Demo

The Game Of Life is a classical cellular automata (CA) de�ned on a rectangular grid. Its

behaviour is simular to the growth of cells on a plane. Each grid point is either empty or

occupied by a cell. The update rules are simple:

� If the grid point is empty and exactly three of the eight next neighbours are occupied

a new cell is born.

76 CHAPTER 4. TOOLBOX EXTENSION FOR RECTANGULAR GRIDS

� If the grid point is occupied and the cell has either 2 or 3 neighbours it survives.

Otherwise it dies.

The demo simulates the CA with a grid of 512 by 512 grid points. The subgrids on the grid

nodes are 128 by 128. Instead of simply using a ag whether a point is occupied or not,

the age of the cell is stored in each grid point. For each generation the cell survives this

counter is incremented. An age of zero represents an empty cell. On the graphics screen

the grid point will be colored according to its age: the older it is the darker it will appear.

The statistics feature is used to determine the number of cells on the grid and their sum

age. This values are printed to the screen every 5 time steps.

4.6 Two Dimensional Tra�c CA Demo

The two dimensional tra�c demo simulates tra�c of a mixture of vehicles going horizontally=)

new in

0.9.4

and vertically in a grid plane. A certain ratio of grid points are occupied with blocks.

Appendix A

Glossary

Here are some of the technical terms used in this draft just to make sure writer and readers

have the same understanding of the matter. The class handling the mentioned object type

is given in parentheses.

� Node (TBaseNode): Node of the tra�c network to which segments are incedent.

These are mainly junctions and intersections.

� Edge or Segment (TBaseEdge): Part of the tra�c network representing a street,

road or highway segment between two nodes.

� Boundary edge Edges that have nodes in neighbouring CPNs.

� Network (TGraph): Entity of all nodes and segments usually provided as ASCII

input �le.

� Computational Node (CPN) One unit in a parallel computer system. Each CPN

has a local network which is a connected subnet of the global network.

� CPN-Edge (TGraphEdge): An edge which has TGraphs as nodes. It is part of a

TSuperGraph.

� Topology (TSuperGraph): The way CPNs are arranged and accessed in a par-

allel computer system. TSuperGraph has nodes which are TGraphs connected by

TGraphEdges. The existence of a TGraphEdge means that the subnets on the two

associated CPNs are connected by at least one boundary edge of type TBaseEdge.

� Tile Part of the geometric area covered by the tra�c network that will be assigned

to a CPN.

77

78 APPENDIX A. GLOSSARY

Appendix B

Description of Classes

B.1 Class TObject

bool DecodeSelf(TMessage &aMessage)

Description DecodeSelf decodes all data in the local instance of the derived class

using the message aMessage. See 2.6.6 for the recommended order of

decoding.

Overloading The corresponding method of the ancestor class has to be called �rst

before any other decoding is done.

bool Encode(TMessage &aMessage)

Description Encode Encodes all data in the local instance of the derived class us-

ing the message aMessage. See 2.6.6 for the recommended order of

encoding.

Overloading The corresponding method of the ancestor class has to be called �rst

before any other decoding is done.

79

80 APPENDIX B. DESCRIPTION OF CLASSES

B.2 Class TTransferObject

bool Activate(bool FirstTime = FALSE)

Description Overload this method in order to be informed about a change of=)

obsolete

since

0.9.6

state of a transfer object. It is common to allocate local data

structures to accomodate the incoming additional data structures re-

ceived in DecodeNodeData for TApplicationNode or DecodeRange for

TApplicationEdge. Upon call of this method it can be assumed that

DecodeSelf has already been called so that basic object data is avail-

able.

The very �rst time this method is called the parameter FirstTime

is set to TRUE. This can be used to initialize the additional data

structures since in this case no subsequent call to DecodeNodeData

or DecodeRange can be expected.

Overloading The ancestor method must be called at the beginning of this method.

bool ActivateLevel(int Level)

Description Overload this method in order to be informed about a change of state of=)

new in

0.9.6

a transfer object. There are 7 states: INACTIVE LEVEL, ACTIVE LEVEL

and ACTIVE LEVEL INIT1 through ACTIVE LEVEL INIT5.

It is common to allocate local data structures for level ACTIVE LEVEL

to accomodate the incoming additional data structures received

in DecodeNodeData for TApplicationNode or DecodeRange for

TApplicationEdge. Upon call of this method it can be assumed that

DecodeSelf has already been called so that basic object data is avail-

able.

The level ACTIVE LEVEL is always called whenever the object isacti-

vated. The other init levels are only called if they are requested by

passing the topmost init level to

method TSimulationMaster::DistributeAndActivateNet. When-

ever ActivateLevel is called for a certain level L it can be assumed

that all other elements have been activated at least to level L� 1.

The method TTransferObject::IsFirstActivation returns TRUE if

this method is called for the �rst time. This can be used to initialize

the additional data structures since in this case no subsequent call to

DecodeNodeData or DecodeRange can be expected.

B.2. CLASS TTRANSFEROBJECT 81

The obsolete Activate methos can easily be transformed into the new

format. Suppose the old method Activate looked like this:

bool

TDescendent::Activate(bool FirstTime)

{

if (!ParentClass::Activate(FirstTime))

return FALSE;

...general actions...

if (FirstTime)

{

...special actions...

}

return TRUE;

}

The new version with ActivateLevel looks like this:

bool

TDescendent::ActivateLevel(int Level)

{

if (!ParentClass::ActivateLevel(Level))

return FALSE;

switch (Level)

{

case ACTIVE_LEVEL:

...general actions...

if (IsFirstActivation())

{

...special actions...

}

break;

case ACTIVE_LEVEL_INIT1:

...

}

return TRUE;

}

Overloading The ancestor method must be called at the beginning of this method.

82 APPENDIX B. DESCRIPTION OF CLASSES

bool Deactivate(void)

Description Overload this method in order to be informed about a change of state of

a transfer object. It is common to free local data structures which have

just been encoded through EncodeNodeData for TApplicationNode

and EncodeRange for TApplicationEdge.

Overloading The ancestor method must be called at the beginning of this method.

double GetLoadEstimate(void)

Description Overload this method to return a value which will be used as the com-

putational requirement imposed by this transfer object class. The value

should depend on local parameters of the individual instance like num-

ber of elements handled by this instance.

Overloading No call of ancestor method neccessary.

B.3 Class TStatObject

A class TApplicationStat handling statististical data must be derived from class

TStatObject. Beside Encode and Decode which have to be overloaded anyway the most

important methods of this class are:

constructor TApplicationStat(int StatID)

Description This destructor must be supplied for the derived class. It is usually

called in CreateStatObject of TApplicationSlave. All local vari-

ables must be initialized to the null object of the operations used for

aggregating the statistics.

Overloading The StatID must be passed to the constructor of TStatObject.

bool Add(TStatObject &StatObject)

Description The method Add adds the statistical data contained in StatObject to

the local instance. This overloading is only required if the statistics is

not started with mode STAT FLAG MULTI STAT.

Overloading The ancestor method must be called.

B.4. CLASS TBASENODE 83

bool Evaluate(void)

Description Overload this method to make secondary computations based upon the

data stored in the info before it is passed to either HandleStatResult

or HandleMultiStatResult.

Overloading It is recommended to call the ancestor method.

TTimeStep GetTimeStep(void)

Description This method returns the time step that these statistics were aggregated

at.

B.4 Class TBaseNode

B.4.1 Encoding and Decoding of Nodes

There are two types of nodes: local active nodes participating in the simulation and remote

inactive nodes which only reside on a CPN so that a boundary edges have valid references

for both of their adjacent nodes. The toolbox will take care of this di�erence by calling the

methods Activate and Deactivate for local nodes.

Moreover it is assumed that active nodes have local dynamic data structures that have

to encoded and decoded in case of a transfer to another CPN. Therefore the methods

EncodeNodeData and DecodeNodeData should be overloaded for TApplicationNode.

As a rule of thumb the data de/encoded in Encode and DecodeSelf on the one hand

and EncodeNodeData and DecodeNodeData on the other hand should be destinguished as

follows:

� Encode and DecodeSelf should take care of very basic information like IDs and ags

which reect the state of the node.

� EncodeNodeData and DecodeNodeData should take care of extended dynamically al-

located data structures. The above mentioned ags could be used to determine which

data structures to allocate or deallocate.

The calling conventions of the encoding and decoding methods are graphically displayed in

�gure B.1.

84 APPENDIX B. DESCRIPTION OF CLASSES

delete Node

Node = new TApplicationNode

Node->Encode()

retrieve Node

Node->DecodeSelf()

Node->Activate(FirstTime = TRUE)

simulation

Node->Encode()

Node->Deactivate()

Node->Encode()

simulationdelete Nodesimulation (passive)

simulation (passive)

retrieve Node

Node->DecodeNodeData()

Node->Activate(FirstTime=FALSE)

simulation

Node->Deactivate()

delete Node

simulation (passive)

Node->DecodeSelf()

Node->EncodeNodeData()

local noderemote node

or or

creation
distribute net

distribute net
activate net

transfer topology
transfer topology

term
ination

CPN 2

CPN 1

Master

Events

Figure B.1: Coding and Decoding of TApplicationNode

B.5. CLASS TBASEEDGE 85

B.4.2 Methods de�ning transfer behaviour

bool DecodeNodeData(TMessage &aMessage)

Description Overload this method to decode additional node data structures from (=

new in

0.9.4

message aMessage. Upon call of this method it can assumed that the

methods DecodeSelf and Activate have already been called.

Overloading It is recommended to call the ancestor method at the beginning of this

method.

virtual bool DecodeSelf(TMessage &aMessage)

Description Overload this method to decode basic node information from message

aMessage.

Overloading The ancestor method must be called at the beginning of this method.

bool Encode(TMessage &aMessage)

Description Overload this method to encode basic node information into message

aMessage.

Overloading The ancestor method must be called at the beginning of this method.

bool EncodeNodeData(TMessage &aMessage)

Description Overload this method to encode additional node information into mes- (=

new in

0.9.4

sage aMessage.

Overloading It is recommended to call the ancestor method at the beginning of the

method.

B.5 Class TBaseEdge

B.5.1 Encoding and Decoding of Edges

86 APPENDIX B. DESCRIPTION OF CLASSES

Edge = new TApplicationEdge

Edge->Encode()

delete Edge

retrieve Edge

Edge->DecodeSelf()

Simulation

Edge->Deactivate()

delete Edge

Simulation

Edge->DecodeRange(e, f)
calls Edge->SetActiveRange(g, h)

EncodeRange(c, d)

Edge->SetRange(c, d)

Edge->Encode()

Edge->EncodeRange(a, b)

Edge->Deactivate()

delete Edge

retrieve Edge

Edge->DecodeSelf()

Edge->Activate(FirstTime = FALSE)

retrieve Edge

Simulation

Edge->Activate(FirstTime = TRUE)

calls TBaseEdge->Activate()

calls Edge->SetActivateRange(a, b)

Events

Master

CPN 1

SplitEdgeTransferEdge

CPN 2

creation
distribute net

topology transfer
topology transfer

term
ination

distribute net
activate net

Figure B.2: Coding and Decoding of TApplicationEdge

B.5. CLASS TBASEEDGE 87

In contrast to nodes all edges are active. But since some of them are boundary edges only

a certain range extending from the FromNode with value 0.0 to the ToNode with value 1.0

is valid. The edge is informed through SetValidRange about changes of this range.

As with the nodes it is assumed that the data stored on the edge can be split into basic

data de/encoded through DecodeSelf and Encode and additional data de/encoded through

DecodeRange and EncodeRange.

The calling conventions of the encoding and decoding methods are graphically displayed in

�gure B.2.

B.5.2 Methods de�ning transfer behaviour

bool DecodeRange(TMessage &aMessage, double RangeBegin,

double RangeEnd)

Description Use this method to decode the range [RangeBegin, RangeEnd] from

message aMessage. Upon call of this method it can be assumed that

methods Activate, DecodeSelf, and SetActiveRange have already

been called.

Overloading It is recommended to call of the ancestor method at the beginning of

this method.

bool DecodeSelf(TMessage &aMessage)

Description Overload this method to decode basic edge data from message

aMessage.

Overloading The ancestor method must be called at the beginning of the method.

bool DisposeRange(double RangeBegin, double RangeEnd)

Description Overload this method in order to be informed about ranges that are

not needed anymore and can thus be deallocated.

Overloading It is recommended to call the ancestor method at the end of this

method.

88 APPENDIX B. DESCRIPTION OF CLASSES

When range [a; b] from{boundary to{boundary

edge is local [0:0; 1:0] [0:0; b

w

] [1:0� b

w

; 1:0]

edge is boundary, from{node is local [0:0; s

p

] [0:0; b

w

] [s

p

� b

w

; s

p

]

edge is boundary, to{node is local [s

p

; 1:0] [s

p

; s

p

+ b

w

] [1:0� b

w

; 1:0]

Table B.1: Active Ranges of Edges

bool Encode(TMessage &aMessage)

Description Overload this method to encode basic edge data into message

aMessage.

Overloading The ancestor method must be called at the beginning of this method.

bool EncodeRange(TMessage &aMessage, double RangeBegin,

double RangeEnd)

Description Overload this method to encode the range [RangeBegin, RangeEnd] into

message aMessage. Note that you are allowed to deallocate the range

after encoding. Overload DisposeRange for this purpose.

Overloading It is recommended to call the ancestor method at the beginning of this

method.

bool SetActiveRange(double RangeBegin, double RangeEnd)

Description Overload this method to determine the active range of the edge which

participates in simulation. The values passed here also de�ne the

boundary areas for GetBoundary.

Overloading It is recommended to call the ancestor method at the beginning of the

method.

B.5.3 Methods de�ning boundary behaviour

B.6. CLASS TSIMULATIONSLAVE 89

bool GetBoundary(TTimeStep TimeStep, TBoundary *&Boundary,

TDirection BoundaryDirection)

Description Overload this method to �ll the boundary Boundary which has pre-

viously been allocated

through CreateBoundary of TSimulationSlave. You are allowed to

type cast Boundary into TApplicationBoundary. Use the values set

by SetActiveRange, the parameter BoundaryDirection and table B.1

to determine the proper data to encode.

Overloading No call to ancestor method neccessary.

bool SetBoundary(TBoundary *Boundary)

Description Overload this method to decode boundary information from bound-

ary Boundary. You are allowed to type cast Boundary into

TApplicationBoundary.

Overloading No call to ancestor method neccessary.

B.6 Class TSimulationSlave

B.6.1 Public Utility Methods

B.6.2 Methods De�ning Simulation Behaviour

bool BeginSimulationSequence(TTimeStep SequenceStart,

TTimeStep SequenceEnd, long SequenceID)

Description Overload this function in order to be informed about the beginning

of simulation sequences if special preparations are neccessary. The

parameter SequenceID is the passed in StartSimulationSequence.

Overloading No call to ancestor neccessary.

90 APPENDIX B. DESCRIPTION OF CLASSES

bool EndSimulationSequence(void)

Description Overload this method in order to be informed about the end of the

current sequence.

Overloading No call to ancestor neccessary.

bool ExecuteTimeStep(TTimeStep TimeStep)

Description Overloading this method de�nes the action performed for each

time step of the simulation sequence. It is the key method of

TSimulationSlave. Upon call it can be assumed that all neccessary

boundaries from the neighbours for the time step TimeStep have been

received and have been made available.

Overloading Call of the ancestor method is recommended to support the view win-

dow graphics option.

B.6.3 Methods De�ning Statistics Behaviour

bool CreateStatObject(int StatID, TStatObject *&StatObject)

Description This method is overloaded to create instances of user{de�ned statis-

tics objects using the TMyStatObject(int StatID) constructor. The

function returns a pointer to the new instance in StatObject. The

return value is TRUE in case of success, FALSE otherwise.

Overloading In case the StatID does not belong to the user{de�ned IDs the corre-

sponding ancestor method must be called.

bool GatherStatistics(int StatID, TStatObject *&StatObject)

Description Upon call of this method the slave must retrieve the statistics identi�ed

by ID StatID from the local subnet. It can be assumed that the in-

stance of TMyStatObject pointed at by StatObject has been properly

initialized!

Overloading In case the StatID does not belong to the user{de�ned IDs the corre-

sponding ancestor method must be called.

B.6. CLASS TSIMULATIONSLAVE 91

bool HandleMultiStatResult(int StatID,

TMultiStatObjectPrimitive *StatObject)

Description This method is equivalent to HandleStatResult except for the fact

that StatObject points to an array of pointers to instances of

TMyStatObject. A type cast to (TMultiStatObject<TMyStatObject>

*) may be practical. Note that the array pointed to by StatObject

must be disposed after use!

Overloading In case the StatID does not belong to the user{de�ned IDs the corre-

sponding ancestor method must be called.

bool HandleStatResult(int StatID, TStatObject *&StatObject)

Description This method is overloaded to handle the results of user{de�ned statis-

tics. The pointer StatObject points at a instance of the user{de�ned

statistics class containing the aggregated statistics of type StatID. To

access methods and variables local a type cast to (TMyStatObject *&)

may be practical. Note that the object pointed to by StatObject must

be disposed after use! The return value is TRUE in case of success, FALSE

otherwise.

Overloading In case the StatID does not belong to the user{de�ned IDs the corre-

sponding ancestor method must be called.

B.6.4 Methods De�ning Miscelleneous Behaviour

TBoundary *CreateBoundary(void)

Description This method has to be overloaded if a user

de�ned TApplicationBoundary is used instead of the ancestor class

TBoundary. In that case an instance of TApplicationBoundary has to

be created and returned.

Overloading No call to the ancestor method neccessary.

92 APPENDIX B. DESCRIPTION OF CLASSES

TSuperGraphPrimitive *CreateNet(int GraphNr)

Description This method must be overloaded to supply an instance of the

template class TSimulationGraph<> which has been applied to

TApplicationNode and TApplicationEdge. Pass GraphNr to the con-

structor.

Overloading No call to ancestor method neccessary.

bool DecodeInitInfo(TEvent &anEvent)

Description Overwrite this method to decode the init info encoded by

TApplicationMaster in EncodeInitInfo.

Overloading The ancestor method has to be called at the beginning of the method.

B.7 Class TSimulationMaster

B.7.1 Public Control Methods

bool StartSimulationSequence(long NrOfTimeSteps,

long SequenceID = 0)

Description Use this method to start a simulation sequence of NrOftimeSteps time

steps in method SimulationControl. The parameter SequenceID will

be passed to BeginSimulationSequence of TSimulationSlave.

B.7. CLASS TSIMULATIONMASTER 93

bool StartStatistics(int StatID, TTimeStep Start, TTimeStep End,

long Interval, long Flags,PvmID Destination)

Description StartStatistics activates the gathering of statistics for the ID

StatID starting at time step Start and ending at (not including) time

step End. The statistics will be polled every Interval time steps.

Flags is a bitwise combination of the following constants:

STAT FLAG MULTI STAT will declare the statistics as a multi statistics

instead of single statistics (default).

STAT FLAG NEIGHBOUR STAT will declare the statistics as local statis-

tics instead of global statistics (default).

The parameter Flags can be omitted if the defaults are ok. The pa-

rameter Destination should always be omitted. The method returns

TRUE in case of success, FALSE otherwise.

B.7.2 Methods De�ning Simulation Control

bool EncodeInitInfo(TEvent &anEvent)

Description Overwrite this method to send an init info to a new slave. This

info should contain all information the slave needs to start simula-

tion immediately afterwards. It will be decoded in DecodeInfoInfo of

TSimulationSlave. The built in method transfers data retrieved from

the command line to the slaves.

Overloading The ancestor method has to be called at the beginning of the method.

bool ExecuteMasterTimeStep(TTimeStep TimeStep)

Description Overwrite this method to execute tasks which have to be done by the

master. The built in method takes care of the graphics if activated.

Overloading Call to the ancestor method is neccessary.

94 APPENDIX B. DESCRIPTION OF CLASSES

bool HandleMasterEvent(TEvent &anEvent, bool &Handled)

Description Use this method to be informed about incoming events. The parameter

Handled has to be set to TRUE if the event could successfully be handled.

Overloading If the event type is unknown a call to the ancestor method is neccessary.

bool SimulationControl(TControlStep &ControlStep, bool &Quit)

Description This is the key method of TSimulationMaster. It is used to de-

�ne the course of the simulation. The �rst time this method is

called ControlStep will be set to zero. Before each subsequent call

ControlStep will be incremented enabling the user to destinguish be-

tween the di�erent calls in a switch{statement.

Upon call of this method it can be assumed that all slaves have �nished

their latest simulation sequence and are globally synchronized. At the

end of SimulationControl the method Synchronize should be called

unless the method StartSimulationSequence is used which implies

an automatic synchronization.

It is explicitly allwowed to change the value of ControlStep. This can

used to call the same step several times.

By setting Quit to TRUE the simulation is terminated. This method

will not be called again.

Overloading !!!!! Do not call the ancestor method !!!!!

B.8 Abstract data structures

In the implementation, �ve abstract data structures will be used to handle sets of objects

'in an orderly fashion'. They will either be taken from a library (if available) or be written

especially �tted for this simulation. All should be provided as templates to allow for

maximum programming comfort and to enhance readability of the source code.

Non intrusive singly linked list

This is just a regular singly linked list that handles type cast (through templates) pointers

of objects.

B.9. TREES 95

Non intrusive doubly linked list

Equivalent to the singly linked list.

Binary tree

The binary tree will be used to organize message passing between the CPNs

1

especially for

broadcasting and gathering statistical data by reducing.

Heap

The heap will be used to �nd the maximum or minimum of a characteristic of a dynamically

changing set of objects. An example is the scheduler which sorts the received events by the

time stamp of each scheduled event. The event with the minimum in time will be executed

�rst.

AB-tree

An AB-tree is de�ned as a tree in which all non leaves have at least A sons and at most

B sons. It can be shown that AB-trees have always a depth complexity of O(logn) and

therefore all dynamic insertions and deletions can be done in O(logn) time complexity.

Usually an in�x order is applied to the AB-tree to allow for quick managing of sorted sets.

In this simulation the ID-tree which links IDs with pointers will be organized in an AB-tree.

B.9 Trees

B.9.1 Object inheritence tree

See �gure B.3. Arrows point from parent to child.

B.9.2 Object dependency tree

See �gure B.4. Arrows represent relationship uses a. Labels like 1 : n denote the number

of objects used by another object. n may vary in each case.

1

computational nodes

96 APPENDIX B. DESCRIPTION OF CLASSES

Base object

e.g. TCar

TObstruction

TGrid

TSite

TDriver

TMessage

template TReference

TEvent

TDataManagerTTraveller

TSimulationSlave

TSimulationMaster

TBaseSegment TSegment

TBaseNode TNode TTerminal

TVehicle

TPhantom

TScheduler

TLoadBalancer

TPlan

TQueueTGroup

TEventHandler TID

TNet

TIntersection

TIntelligentObject

TIntelligentParallelObject

Figure B.3: Object inheritence tree

B.10 Location of Classes

B.10. LOCATION OF CLASSES 97

updated but not used in CA

CA only

TVehicle

TSegment

TNet

TIntersection

TNode

TGroup

TTraveller

TDataManager

TScheduler

TSite

TPlan

TBaseNode

TGrid

TBaseSegment

TLoadBalancer

1:1

1:1

1:n

TMessageControl

TQueue

TDriver

1:1

1:n 1:n

1:n
1:n

1:n

1:1

1:n

1:2

TSimulationMaster

1:n

1:1

1:1

1:1

G
lo

ba
l

L
oc

al

M
es

sa
ge

 le
ve

l

1:2

E
ve

nt
 le

ve
l

1:n

eventdirect

direct

TSimulationSlave

1:n

1:n

1:n

M
od

el
 d

ep
en

da
nt

 e
ve

nt
 le

ve
l

1:1 1:1

1:1

Figure B.4: Object dependency tree

98 APPENDIX B. DESCRIPTION OF CLASSES

Class Location Who

EdgeIO TRANSIMS/EdgeIO.H RO

GrWindow michael/Graphx.h MO

NodeIO TRANSIMS/NodeIO.H RO

TABTree<> include/TABTree.h MR

TABTreeElement include/TABTree.h MR

TABTreePrimitive include/TABTree.h MR

TAdjacence obsolete (06{16{95) MR

TAlarm include/TSignal.h MR

TApplication<> include/TApplication.h MR

TArray<> include/TArray.h MR

TArrayPrimitive include/TArray.h MR

TBaseEdge include/TBaseEdge.h MR

TBaseNode include/TBaseNode.h MR

TBaseObject include/TBaseObject.h MR

TBoundary include/TBoundary.h MR

TColorInfo include/TColor.h MR

TControlInfo include/TSimulationSlave.h MR

TCPNCount include/TCPNInfo.h MR

TCPNInfo include/TCPNInfo.h MR

TDataManager TRANSIMS/TDataManager.h MR

TDebug include/TDebug.h MR

TDLList<> include/TDLList.h MR

TDLListEnumPrimitive include/TDLList.h MR

TDLListEnum<> include/TDLList.h MR

TDLListPrimitive include/TDLList.h MR

TDLListReference include/TDLList.h MR

TEnumerator<> include/TEnumerator.h MR

TEnumeratorPrimitive include/TEnumerator.h MR

TEvent include/TEvent.h MR

TForwardInfo include/TForward.h MR

TForwardManager include/TForward.h MR

TGraph<> include/TGraph.h MR

TGraphEdge include/TGraphEdge.h MR

TGraphPrimitive include/TGraph.h MR

TGraphicsManager include/TGraphicsManager.h MR

TGrid TRANSIMS/TGrid.h MR

TGridBoundary<> grid/TGridBoundary.h MR

TGridEdge<> grid/TGridEdge.h MR

TGridInitInfo<> grid/TGridSlave.h MR

TGridMaster<> grid/TGridMaster.h MR

TGridNode<> grid/TGridNode.h MR

TGridNodeInfo grid/TGridSite.h MR

TGridNodePrimitive grid/TGridNode.h MR

Table B.2: Location Of Toolbox Classes (part 1)

B.10. LOCATION OF CLASSES 99

Class Location Who

TGridSlave<> grid/TGridSlave.h MR

TGridSlavePrimitive grid/TGridSlave.h MR

THardwareInfo include/THardware.h MR

THardwareInfoManager include/THardware.h MR

TID2Table<> include/TID2Table.h MR

TID2TableEntry<> include/TID2Table.h MR

TID2TablePrimitive include/TID2Table.h MR

TIdleTimeInfo include/TIdleTime.h MR

TIDTable<> include/TIDTable.h MR

TIDTableEntry<> include/TIDTable.h MR

TIDTablePrimitive include/TIDTable.h MR

TLifeGridSite life/TLifeGridSite.h MR

TLifeGridStat life/TLifeGridSite.h MR

TLifeMaster life/TLifeMaster.h MR

TLoadBalanceInfo include/TLoadBalance.h MR

TLoadBalanceNeighbourInfo include/TLoadBalance.h MR

TLoadTransferInfo include/TLoadBalance.h MR

TLocation include/TLocation.h MR

TMessage include/TMessage.h MR

TMessageControl include/TMessageControl.h MR

TMultilaneBoundary CA/TMultilaneBoundary.h MR

TMultilaneEdge CA/TMultilaneEdge.h MR

TMultilaneGrid CA/TMultilaneGrid.h MR

TMultilaneStat CA/TMultilaneStat.h MR

TMultilaneViewDrawContext CA/TMultilaneViewDrawContext.h MR

TMultiStatObject include/TStat.h MR

TMultiStatObjectPrimitive include/TStat.h MR

TObject include/TObject.h MR

TObjectArray<> include/TObjectArray.h MR

TObjectID include/TObjectID.h MR

TPositionHandler MicroSim/TPositionHandler.h MR

TPartitionInfo include/TGraph.h MR

TRandom include/TRandom.h MR

TRectangle include/TLocation.h MR

TReference<> include/TReference.h MR

TReferencePrimitive include/TReference.h MR

TSignal include/TSignal.h MR

TSimulationGraph<> include/TSimulationGraph.h MR

TSimulationInfo include/TSimulationSlave.h MR

TSimulationMaster include/TSimulationMaster.h MR

TSimulationSlave include/TSimulationSlave.h MR

TSimpleVehicleStat TRANSIMS/TSimpleVehicleStat.h MR

TSingleTransferInfo include/TLoadBalance.h MR

Table B.3: Location Of Toolbox Classes (part 2)

100 APPENDIX B. DESCRIPTION OF CLASSES

Class Location Who

TStatDelayInfo include/TSimulationSlave.h MR

TStatInfo include/TSimulationSlave.h MR

TStatistics include/TStatistics.h MR

TStatObject include/TStat.h MR

TStatResultInfo include/TSimulationSlave.h MR

TString include/TString.h MR

TSuperGraph<> include/TSuperGraph.h MR

TSuperGraphPrimitive include/TSuperGraph.h MR

TTalkInfo include/TTalk.h MR

TTimer include/TTimer.h MR

TTransferObject include/TTransferObject.h MR

TTransferRandom include/TTransferRandom.h MR

TTransimsBoundary TRANSIMS/TTransimsBoundary.h MR

TTransimsEdge TRANSIMS/TTransimsEdge.h MR

TTransimsNode TRANSIMS/TTransimsNode.h MR

TVehicle MicroSim/TVehicle.h MR

TVehicleDrawEntry CA/TMultilaneViewDrawContext.h MR

TView include/TView.h MR

TViewDataHandler include/TViewDataHandler.h MR

TViewDrawContext include/TViewDrawContext.h MR

TViewDrawObject include/TViewDrawObject.h MR

TViewManager include/TViewManager.h MR

TViewManagerSlave include/TViewManagerSlave.h MR

TWindow include/TWindow.h MR

Table B.4: Location Of Toolbox Classes (part 3)

List of Figures

2.1 SIMD Master Slave Structure : 21

2.2 Initial Distribution of Nodes onto eight CPNs : : : : : : : : : : : : : : : : : 22

2.3 The Object Hierarchy : 24

2.4 Hierarchy Representations on Master and Slaves : : : : : : : : : : : : : : : 25

2.5 Timing of a Simulation Run : 27

2.6 External Boundaries : 29

2.7 Internal Boundaries : 30

2.8 Consistent Handling of Boundary Objects : : : : : : : : : : : : : : : : : : : 31

2.9 Timing of Boundaries : 32

2.10 Running Idle Versus Overloaded : 34

2.11 Local and global dynamic load balancing : 34

2.12 Selecting Topology : 39

2.13 Isolated Subnet after Selection : 40

2.14 Order of encoding : 41

3.1 Master and Simulation Control : 55

3.2 TView On Slaves : 59

3.3 TView on the Master : 61

4.1 De�nition of a Subgrid : 70

4.2 Prede�ned Decendant Objects Of The Grid Extension : : : : : : : : : : : : : 71

4.3 Accessing Nearest Neighbours of a Grid Point : : : : : : : : : : : : : : : : : 73

B.1 Coding and Decoding of TApplicationNode : : : : : : : : : : : : : : : : : : 84

B.2 Coding and Decoding of TApplicationEdge : : : : : : : : : : : : : : : : : : 86

B.3 Object inheritence tree : 96

B.4 Object dependency tree : 97

101

102 LIST OF FIGURES

List of Tables

2.1 Platforms : 17

2.2 Terms used in descriptions of dynamic load balancing : : : : : : : : : : : : 36

2.3 Node And Edge Functionality : 46

3.1 Files of the Grid Application Framework : 53

3.2 Prede�ned Toolbox Commandline Options : : : : : : : : : : : : : : : : : : : 62

3.3 ZPR Micro Simulation Command Line Options : : : : : : : : : : : : : : : : 67

3.4 Periodic CA Demo Command Line Options : : : : : : : : : : : : : : : : : : 68

3.5 Network CA Demo Command Line Options : : : : : : : : : : : : : : : : : : 68

4.1 Files of the Grid Application Framework : 72

B.1 Active Ranges of Edges : 88

B.2 Location Of Toolbox Classes (part 1) : 98

B.3 Location Of Toolbox Classes (part 2) : 99

B.4 Location Of Toolbox Classes (part 3) : 100

103

