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Deutsche Kurzbeschreibung

In dieser Arbeit werden verschiedene Aspekte moderner Verkehrssimulation beschrieben, beginnend

mit einem Modell f

�

ur den Verkehr auf einem einzelnen Stra�enabschnitt bis hin zum kompletten

Stra�ennetzwerk. Der Simulator PAMINA wird benutzt um selbstkonsistente Routens

�

atze zu be-

rechnen, die schlie�lich als Basis f

�

ur die Experimente mit Online-Routing dienen.

Die folgende deutsche Zusammenfassung ist im wesentlichen eine

�

Ubersetzung des Kapitels 7. Eine

WWW-Version dieser Arbeit is unter der URL

http://www.zpr.uni-koeln.de/~mr/dissertation/

abrufbar. Die Seite enth

�

ahlt au�erdem Informationen dar

�

uber, wo der Quellcode des Simulators

PAMINA und eine begleitende Anleitung erh

�

altlich sind.

Kapitel 2 | Verkehr auf Stra�enabschnitten

Der Verkehr auf zwei Spuren zeigt gegen

�

uber dem Verkehr auf einer Spur neue Aspekte. Wie in

der Realit

�

at ist das

�

Uberholen ein wichtiger Bestandteil der Fahrdynamik. Kapitel 2 enth

�

alt eine

Erweiterung des Regelsatzes des einspurigen zellularen Automaten (CA) mit drei Parametern, die

den grundlegenden Spurwechselproze� beschreiben. Die symmetrische Version behandelt Links-

Rechts- und Rechts-Links-Wechsel gleich. Die asymmetrische Version bevorteilt die Links-Rechts-

�

Uberg

�

ange, womit die Richtlinien auf autobahn

�

ahnlichen Stra�en simuliert werden k

�

onnen. Die

erhaltenen Fundamentaldiagramme sind den in der Realit

�

at ermittelten

�

ahnlich. Wir k

�

onnen auch

zeigen, da� das Ph

�

anomen der Ping-Pong-Spurwechsel erheblich durch Einf

�

uhrung einer zus

�

atzli-

chen Spurwechselwahrscheinlichkeit reduziert werden kann.

Der Look-Back-Parameter, der bestimmt, wie weit ein Fahrer vor dem Wechsel \

�

uber seine Schul-

ter" zur

�

uckschaut, wird als grundlegend f

�

ur die Gleichm

�

a�igkeit des Verkehrsusses aufgezeigt.

Durch die Reduzierung des Parameters von v

max

Gitterpl

�

atzen auf Null wird die Laminarit

�

at des

Flusses, besonders im asymmetrischen Fall, zerst

�

ort. Im tats

�

achlichen Stra�enverkehr erh

�

ohen egoi-

stische Spurwechselman

�

over die Unfallwahrscheinlichkeit betr

�

achtlich. Deswegen kann | obwohl

der CA-Regelsatz keine Unf

�

alle erlaubt | das Ausma� an Flu�unregelm

�

a�igkeiten als Hinweis

daf

�

ur angesehen werden, wie sicher der Verkehr ie�t.

Kapitel 3 | Ausf

�

uhrung von vorberechneten Routen

In Kapitel 3 wird das zweispurige Modell als Grundlage f

�

ur den Simulator PAMINA verwendet.

Durch Kombination von einfachen Netzwerkbausteinen zu Verbundelementen sind wir in der Lage,

sowohl Fernstra�ennetze (bzw. Autobahnnetze) als auch innerst

�

adtische Stra�ennetze abzubilden.

Das deutsche Autobahnnetz mit einer Gesamtl

�

ange von 75000 [km] dient dabei als erstes Beispiel-

netz. Au�erdem ist der Simulator in der Lage individuelle Routen auszuf

�

uhren, eine Eigenschaft, die

3



sich im folgenden als wichtig herausstellen wird. Allerdings werden bei diesen ersten Simulationen

die Routen noch zuf

�

allig ausgew

�

ahlt.

Einen ersten Test f

�

ur PAMINA f

�

uhren wir im Rahmen der TRANSIMS-Case-Study

1

durch. Sowohl

das Stra�ennetz als auch der zugrundeliegende Routensatz sind zu diesem Zeitpunkt noch vorl

�

au�g:

Das Stra�ennetz umfa�t keine kleinen inner

�

ortlichen Stra�en und der Routensatz ist in sofern noch

nicht ausgewogen, als da� Fahrer versuchen, Staus zu umgehen.

Wir untersuchen, wie die \Wiedergabetreue" der Simulation durch Aktivieren oder Deaktivieren der

Geschwindigkeitsbeschr

�

ankungen und Ampeln beieinu�t wird, indem die tats

�

achlichen Reisezeiten

mit den vom Routenplaner vorhergesagten verglichen werden. Es ergibt sich, da� die Simulation

mit aktivierten Geschwindigkeitsbeschr

�

ankungen bei gleichzeitig deaktivierten Ampeln die beste

�

Ubereinstimmung bietet. Es soll an dieser Stelle betont werden, da� es im Prinzip nicht das

Ziel der Mikrosimulation ist, die Sch

�

atzungen des Routenplaners exakt zu reproduzieren. Nur

die Mikrosimulation selbst ist in der Lage, den Aufbau von Staus

�

uber Stra�enabschnittsgrenzen

hinweg korrekt wiederzugeben. Deswegen wird es immer Diskrepanzen zwischen Routenplaner und

Mikrosimulation geben, sobald abschnittsweise die Verkehrsnachfrage die Kapazit

�

at

�

uberschreitet.

W

�

ahrend der Simulation der Study-Area f

�

allt besonders das Ph

�

anomen der \Grid-Locks auf". Diese

Zust

�

ande, bei denen regional die Fahrzeuge so dicht stehen, da� sie sich gegenseitig permanent am

Weiterfahren hindern, treten bei hohen Fahrzeugdichten auf. Sie werden dadurch verursacht, da�

es den Fahrern | zumindest in der in diesem Kapitel verwendeten Version | nicht m

�

oglich ist,

ihre Route w

�

ahrend der Fahrt zu

�

andern. Die Anzahl der Grid-Locks h

�

angt von der verwendeten

Wiedergabetreue ab: ohne Geschwindigkeitsbeschr

�

ankungen und ohne Ampeln treten nie Grid-

Locks auf. Dasselbe gilt f

�

ur aktivierte Geschwindigkeitsbeschr

�

ankungen. Die Hinzuschaltung der

Ampeln hat noch gr

�

o�ere Auswirkungen auf den Verkehrsu�: das System entwickelt unabh

�

angig

vom Zustand der Geschwindigkeitsbeschr

�

ankungen immer Grid-Locks. Das unterstreicht, da� in

einem innerst

�

adtischen Stra�ennetz der Gesamtdurchsatz haupts

�

achlich durch den Durchsatz an

Kreuzungen bestimmt ist. Die Einf

�

uhrung von Geschwindigkeitsbeschr

�

ankungen hat dagegen we-

nig Einu�, da bei den im Stadtverkehr vorkommenden Dichten die mittlere Geschwindigkeit der

Fahrzeuge sowieso bereits mit denen der Geschwindigkeitsbeschr

�

ankungen vergleichbar ist.

Wir f

�

uhren einen weiteren Parameter q

r

ein, um die L

�

ange der Rotphasen an Ampeln zu justieren.

Durch Variation des Parameters zwischen 0 und 1 k

�

onnen wir kontinuierlich von einem Verkehrs-

modell ohne Ampeln zu einem mit Ampeln

�

ubergehen. Im Bereich q

r

= 0:6 : : : 0:65 registrieren

wir einen

�

Ubergang: unterhalb von q

r

= 0:6 entwickelt keiner der L

�

aufe einen Grid-Lock, oberhalb

von q

r

= 0:65 haben s

�

amtliche L

�

aufe Grid-Locks. F

�

ur L

�

aufe innerhalb des Intervalls stellen wir ein

stochastisches Verhalten fest.

1

Case-Study bezieht sich hier auf eine spezielle Fallstudie in Dallas, Texas, die aus dem Simulationsgebiet der

Study-Area und bestimmten Szenarien besteht.
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Kapitel 4 | Iterative Routenadaption

Im letzten Kapitel entsprachen die in PAMINA verwendeten Routens

�

atze denen, die f

�

ur die

TRANSIMS-Case-Study durch einen iterativen Proze� mit dem TRANSIMS-Mikrosimulator er-

stellt wurden. In Kapitel 4 w

�

ahlen wir einen konsistenteren Ansatz: Der Routensatz f

�

ur PAMINA

wird iterativ

�

uber R

�

uckkopplung durch Reisezeiten aus PAMINA-Simulationsl

�

aufen gewonnen.

Dank der hohen Ausf

�

uhrungsgeschwindigkeit von PAMINA und Verbesserungen im Datenaustausch

zwischen Planer und Routenkonverter ist es m

�

oglich, die Laufzeit drastisch zu reduzieren. Vergli-

chen mit TRANSIMS, das 1996 ca. 8.5 Stunden f

�

ur einen Lauf ben

�

otigte, k

�

onnen wir mit PAMINA

die Zeitspanne f

�

ur eine Iteration, bestehend aus Planer | Mikrosimulation | Routenkonverter, auf

35-45 Minuten reduzieren. Dies gestattet uns die Durchf

�

uhrung von umfangreichen Experimenten

zur iterativen Routenadaption. Wir de�nieren drei einfache Parameter, von denen vermutet wurde,

da� sie den adaptiven Proze� beeinussen k

�

onnten: der Ausgangsroutensatz, die Auswahlkriterien

f

�

ur neu zu planende Routen und die Neuplanungsrate. Gl

�

ucklicherweise stellt sich heraus, da�

im Rahmen der hier durchgef

�

uhrten Experimente keiner der Parameter das Resultat der Iteration

entscheidend beeinu�t. Besonders die Unabh

�

angigkeit vom Ausgangsroutenplan ist vorteilhaft,

da sonst unter Umst

�

anden sehr viel Aufwand f

�

ur die Erstellung eines \guten" Ausgangsplans inve-

stiert werden m

�

u�te. Es zeigt sich jedoch, da� der Zeitaufwand bis zur Relaxation durch die Wahl

eines linear altersabh

�

angigen Auswahlkriteriums

2

erheblich gegen

�

uber einer rein zuf

�

alligen Auswahl

reduziert werden kann. Die Gesamtneuplanungsrate

3

f

acc

sollte bei mindestens 2 liegen, um aus-

reichend relaxierte Routens

�

atze zu erhalten, was anhand von Messungen der Gesamtreisezeit aller

Fahrzeuge ermittelt wird. Es sollte zu einem sp

�

ateren Zeitpunkt zumindest ein Lauf mit f

acc

� 3

durchgef

�

uhrt werden, um zu

�

uberpr

�

ufen, ob die Relaxation tats

�

achlich zu ihrem Ende gekommen

ist und auf welchen Wert sich die endg

�

ultige Gesamtreisezeit bel

�

auft.

Zwei Artefakte treten im adaptiven Iterationsproze� auf: (a) Die Anzahl der Routen, die in das

Simulationsgebiet eingespeist werden, nimmt um ca. 10% ab, weil der Routenplaner immer mehr

Routen aufgrund der stark angestiegenen Reisezeiten innerhalb der Study-Area auf au�erhalb der

Grenzen des Gebiets verlegte. Durch Einf

�

uhrung eines Ebene-0-Korrekturfaktors c f

�

ur alle Reisezei-

ten au�erhalb der Study-Area ist es m

�

oglich, diesen E�ekt bis zu einem gewissen Grad umzukehren.

In einem Lauf mit linearer Korrektur nimmt die Anzahl der Pl

�

ane nur um ca. 5% ab, in einem

weiteren Lauf mit Korrektur

p

c um ca. 7.5% Prozent. Diese Abh

�

angigkeit l

�

a�t die Vermutung zu,

da� ein Faktor der Gestalt c

q

mit q 2 [0:5; 2] dazu benutzt werden k

�

onnte, um die Anzahl der durch

die Study-Area gerouteten Fahrzeuge gezielt zu beeinussen. Es stellt sich ebenfalls heraus, da� die

Ebene-0-Korrektur nur als nachtr

�

agliche Korrektur eingesetzt werden sollte, nachdem der Routen-

satz ausreichend relaxiert ist. Dadurch kann der extreme Verlust an Fahrzeugen durch versp

�

atete

Einfahrt in die Study-Area vermieden werden, der w

�

ahrend fr

�

uher Phasen der Iteration auftritt.

Ein weiteres Artefakt besteht in der gro�en Anzahl von Fahrzeugen, die am Ende der Simulations-

zeit an den Grenzen der Study-Area in Warteschlangen aufgestaut sind. Dieser E�ekt wird durch

2

Die Wahrscheinlichkeit f

�

ur die Neuplanung einer Route h

�

angt hierbei linear vom Alter der Route ab, d.h. von

der Anzahl der Iterationen, die seit lder letzten Neuplanung vergangen sind.

3

Die Gesamtneuplanungsrate f

acc

ergibt sich aus der Summe der bis zur jeweiligen Iteration angefallenen einzelnen

Neuplanungsraten.
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die unzureichende R

�

uckkopplung dieser Wartezeit in die Planung verursacht. Wir verwenden eine

Korrektur, bei der die durchschnittliche Wartezeit f

�

ur den Eintritt in einen Stra�enabschnitt zur

Reisezeit auf dem Abschnitt selbst addiert wird. Die Resultate zeigen, da� nach einer Gesamtneu-

planungsrate von f

acc

> 1:5 keiner der untersuchten Iterationsl

�

aufe aufgestaute Fahrzeuge am Ende

der Simulation aufweist.

Obwohl die Routens

�

atze nach ausreichender Gesamtneuplanungsrate (f

acc

> 2:0) als gut relaxiert

angesehen werden k

�

onnen, zeigen die Gesamtreisezeit und die Anzahl der Fahrzeuge in der Study-

Area dennoch Fluktuationen zwischen aufeinanderfolgenden Iterationen. In zuk

�

unftigen Betrach-

tungen wird untersucht werden, wie die Amplitude dieser Fluktuationen mit denen des vom Planer

bereitgestellten Nachfragepro�ls zusammenh

�

angt, das Aufschlu� dar

�

uber gibt, wie viele Fahrzeuge

auf einem Stra�enabschnitt anfallen w

�

urden, falls es keine R

�

uckstaus und stochastisches Fahrerver-

halten g

�

abe. Als Vorbereitung werden f

�

ur die meisten Iterationsl

�

aufe bereits die ben

�

otigten Daten

gesammelt.

Anschlie�end f

�

uhren wir einen Vergleich von drei Simulatoren auf dem gleichen Simulationsgebiet

durch. Der TRANSIMS Mikrosimulator, PAMINA und der Simulator SCAM werden jeweils mit

ihren eigenen selbstkonsistenten Routens

�

atzen verwendet. Die Ergebnisse f

�

ur die Gesamtreisezeit

und die zeitabh

�

angige Anzahl der Fahrzeuge in der Study-Area zeigen zwar qualitative

�

Uberein-

stimmung, es gibt jedoch quantitative Unterschiede. SCAM liefert Resultate unterhalb derer von

PAMINA, was leicht durch die Tatsache erkl

�

art werden kann, da� SCAM das gesamte Gebiet von

Dallas - Fort Worth simuliert: Staus, die au�erhalb der Study-Area auftreten, f

�

uhren zu einer klei-

neren Anzahl von Fahrzeugen innerhalb der Study-Area. Die Verl

�

aufe der TRANSIMS-Kurven sind

�

aquivalent f

�

ur kleine Gesamtneuplanungsraten (f

acc

� 1:0). In sp

�

ateren Iterationen (f

acc

� 3:0)

fallen die PAMINA Verl

�

aufe schlie�lich unter die von TRANSIMS ab. Daher kann angenommen

werden, da� die TRANSIMS-Routens

�

atze nicht ausreichend relaxiert sind. In zuk

�

unftigen Simula-

tionen sollten daher immer nur entsprechend relaxierte Routens

�

atze als Vergleichsgrundlage dienen.

Die Vergleiche beschr

�

anken sich bis zu diesem Zeitpunkt auf entweder r

�

aumlich oder r

�

aumlich und

zeitlich aggregierte Werte. Um eine bessere Vorstellung von den Unterschieden der Simulatoren

zu bekommen, benutzen wir im folgenden schw

�

acher aggregierte Daten. Zuerst betrachten wir

die zeitabh

�

angigen Reisegeschwindigkeiten der Fahrten in die Study-Area f

�

ur TRANSIMS und

PAMINA. Wie im vorhergehenden Vergleich zeigen die Kurven einen qualitativ

�

ahnlichen Verlauf:

beginnend mit hohen Reisegeschwindigkeiten w

�

ahrend der fr

�

uhen Morgenstunden erreichen die

Geschwindigkeiten ein Minimum um ca. 8:00 Uhr. Danach erh

�

ohen sich die Geschwindigkeiten

wieder. Ihre Amplitude ist jedoch f

�

ur PAMINA gr

�

o�er als f

�

ur TRANSIMS. Das ist insofern auf den

ersten Blick verwunderlich, als da� TRANSIMS eine geringere Fahrzeugdichte zur Rush-Hour in

der Study-Area aufweist und die H

�

ochstgeschwindigkeiten auf die gleiche Weise berechnet werden.

Deswegen sollte dieser Vergleich noch einmal wiederholt werden, und zwar mit der gleichen Verz

�

oge-

rungswahrscheinlichkeit p

d

= 0:2, die bei TRANSIMS benutzt wird. PAMINA verwendete bisher

p

d

= 0:3, was die Beschleunigung etwas verkleinert. Besonders bei mittleren und hohen Dichten

haben geringere p

d

einen direkten Einu� auf die Durchschnittsgeschwindigkeit.

Dieser E�ekt wirft auch die grunds

�

atzliche Frage nach der Bestimmung der H

�

ochstgeschwindigkeit

innerhalb eines CA-Modells auf. Wegen der Granularit

�

at kann die Geschwindigkeit nur in Stufen
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von ca. 24 [km/h] ver

�

andert werden. Leider f

�

uhrt die Verwendung der Verz

�

ogerungswahrschein-

lichkeit p

d

zur Feineinstellung der H

�

ochstgeschwindigkeit auch zu Ver

�

anderungen der Fahrdynamik

bei kleinen Geschwindigkeiten.

In einem zweiten Experiment vergleichen wir die Abbiegeraten f

�

ur eine ausgesuchte Menge von

Kreuzungen innerhalb der Study-Area. Die

�

Ubereinstimmung zwischen TRANSIMS und PAMINA

ist zufriedenstellend. Im allgemeinen sind die Raten f

�

ur TRANSIMS niedriger als f

�

ur PAMINA,

was auf die geringere Fahrzeugdichte in TRANSIMS zur

�

uckzuf

�

uhren ist. Beide Simulatoren zeigen

jedoch zum Teil erhebliche Abweichungen gegen

�

uber gemessenen Z

�

ahlraten, die von den amerikani-

schen Beh

�

orden (NCTCOG) zur Verf

�

ugung gestellt worden waren. Es kommen haupts

�

achlich zwei

Ursachen in Frage: (a) Die Start-Ziel Beziehungen aus dem Jahre 1990, die als Datengrundlage f

�

ur

die Routens

�

atze diente, stimmen nicht mit dem verwendeten Stra�ennetz aus dem Jahre 1996

�

ube-

rein. Eine Ver

�

anderung der Infrastruktur f

�

uhrt auch entsprechende

�

Anderungen in der O-D Matrix

mit sich. (b) Beide Simulationen bestrafen das Abbiegen an Kreuzungen nicht ausreichend. Eine

realistischere Repr

�

asentation der Abbiegevorg

�

ange sollte die zu gro�e Anzahl reduzieren k

�

onnen.

Dies wird Gegenstand zuk

�

unftiger Untersuchungen sein. Zusammenfassend bleibt aber zu beto-

nen, da� die in dieser Dissertation angewandten Methoden einige der ersten Resultate liefern, die

realistisch genug sind, um sinnvoll mit gemessenen Daten verglichen werden zu k

�

onnen.

Kapitel 5 | Online-Routing

In Kapitel 5 verwendeten wir PAMINA um eine umfassende Untersuchung von Online-Routing

durchzuf

�

uhren. Wir nehmen an, da� die Fahrer in zwei Gruppen unterteilt werden k

�

onnen: Sub-

skribenten, die Zugri� auf ein Fahrzeugleitsystem haben, und Nichtsubskribenten ohne Zugri�. Den

Anteil der Subskribenten mit Zugri� bezeichnen wir im folgenden mit Marktanteil.

Ein Simulationslauf wird wie folgt durchgef

�

uhrt: In regelm

�

a�igen Zeitintervallen versuchen alle

Subskribenten ihre verbleibende Reisezeit neu hochzurechnen. Sie d

�

urfen jeweils die augenblick-

lichen Reisezeiten der Stra�en auf ihrer Restroute verwenden, die sich innerhalb des maximalen

Planungshorizonts be�nden. Wenn die Hochrechnung um einen gewissen Anteil schlechter ist als

die urspr

�

ungliche Sch

�

atzung des Routenplaners, wird eine neue Route mit einem auf den Planungs-

horizont beschr

�

ankten Standard-Dijkstra-Algorithmus berechnet. Wenn die neue Route wiederum

um einen gewissen Anteil besser als die Hochrechnung ist, wird sie vom Fahrer

�

ubernommen. Dies

gilt als ein Umroutungsvorgang.

Das erste Experiment wird

�

uber einen Routensatz mit einer Gesamtneuplanungsrate von f

acc

= 1:0

durchgef

�

uhrt. Die Stra�enbedingungen werden gegen

�

uber denjenigen, auf denen der Routensatz

beruht, nicht ver

�

andert. Die Resultate k

�

onnen wie folgt zusammengefa�t werden:

(i) W

�

ahrend der Rush-Hour aktualisieren ungef

�

ahr die H

�

alfte aller Subskribenten regelm

�

a�ig ihre

Hochrechnung. Wiederum die H

�

alfte davon erh

�

alt eine neue Route.

(ii) Bei Ankunft am Ziel haben Subskribenten eine im Durchschnitt bis zu 28% k

�

urzere Reisezeit

als wenn sie keine neuen Routen erhalten h

�

atten. Der Vorteil verringert sich mit zunehmenden
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Marktanteil: bei einem Marktanteil von 50% betr

�

agt die Verk

�

urzung nur noch 6%. Dieser

E�ekt stellt ein Dilemma f

�

ur die Anbieter von Fahrzeugleitsystemen dar. Zum einen ist ein

gro�er Marktanteil erstrebenswert, um durch Kauf von Hardware entstandene Investitionen

zu �nanzieren, anderseits ist es naheliegend, da� der Anreiz, ein Fahrzeugleitsystem zu kaufen

und den Service zu subskribieren mit der zur erwartenden Reisezeitverk

�

urzung w

�

achst.

(iii) Die Qualit

�

at der Umroutung verbessert sich, wenn ein Fahrzeug mehr als einmal eine neue

Route erh

�

alt. Sie wird gemessen, indem die Reisezeit mit Fahrzeugleitsystem verglichen

wird mit der Reisezeit der gleichen Fahrt ohne Fahrzeugleitsystem. Dies gibt einen Hinweis

darauf, wie Leitsysteme implementiert werden k

�

onnten: Nach Erhalt einer neuen Route folgt

der Fahrer zun

�

achst dem neuen Vorschlag, versucht aber gleichzeitig immer wieder, die neu

eingeschlagene Route durch Neuberechnung zu verbessern.

(iv) Bis zu einem Marktanteil von 40% hat das Online-Routing einen positiven E�ekt auf alle

Fahrzeuge im System. Dies kann anhand der erfolgreich ausgef

�

uhrten Routen und der durch-

schnittlichen Reisezeit festgestellt werden. F

�

ur 40% Marktanteil betr

�

agt die Verk

�

urzung der

Reisezeit im Durchschnitt 6%. F

�

ur h

�

ohere Marktanteile hat das Online-Routing einen ins-

gesamt negativen E�ekt: Zwar gibt es vereinzelt noch L

�

aufe mit verk

�

urzten Zeiten, aber

insgesamt nimmt die Varianz der durchschnittlichen Reisezeit so stark zu, da� sich die Ver-

besserung nicht mehr auswirkt. Online-Routing bei hohen Marktanteilen macht das System

demnach leicht instabil.

(v) Die Erh

�

ohung des Zeitintervals von 120 [sec] auf 240 [sec] hat einen leicht negativen Einu�.

Intuitiv ist dieser E�ekt gut zu verstehen, denn der Umroutungsproze� basiert immer auf

den aktuellen Reisezeiten aller Stra�en und nicht auf einer Hochrechnung f

�

ur den zuk

�

unftigen

Zustand. Die Erh

�

ohung des Intervals vergr

�

o�ert demnach diese Diskrepanz.

Wir f

�

uhren exakt die gleichen L

�

aufe nochmals mit einem Routensatz durch, der eine Gesamtneu-

planungsrate von f

acc

= 1:5 aufweist. Wie sich schon bei der iterativen Routenadaption heraus-

gestellte, nutzen Routens

�

atze sp

�

aterer Iterationen das Verkehrsnetzwerk besser aus. Es war daher

zu vermuten, da� das Online-Routing f

�

ur einen besser relaxierten Routensatz mit einer geringeren

Wahrscheinlichkeit gute Alternativrouten liefert. Die Ergebnisse unterst

�

utzen diese Vermutung: (a)

Der Vorteil von Subskribenten verringert sich um Faktor f

�

unf, und (b) es gibt zwar einen positiven

E�ekt f

�

ur alle Fahrer bei kleinen Marktanteilen, aber der negative E�ekt durch die hohe Varianz

der Reisezeiten bei gr

�

o�eren Marktanteilen bleibt bestehen.

Die grundlegende Frage ist nun: Wie gut relaxiert ist ein realistisches Verkehrssystem? Wenn

es eher dem Fall f

acc

= 1:5

�

ahnelt, wird sich die Implementation des hier beschriebenen Online-

Routing-Verfahrens als sehr schwierig erweisen. Eine Verbesserung k

�

onnte sich durch die Extrapola-

tion zuk

�

unftiger Reisezeiten ergeben, die zus

�

atzlich

�

uber Standard-Verkehrssituationen abgeglichen

werden, die von der Mikrosimulation hochgerechnet werden. Diese k

�

onnen zum Beispiel vom Wo-

chentag oder von den Wetterbedingungen abh

�

angen. Allerdings wirft dieser Ansatz das Problem

auf, da� die Situation, die Ausgangspunkt der Hochrechung ist, sich nicht einfach als Evolution

eines bestenden Routensatzes reproduzieren l

�

a�t.
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In den beiden letzten Experimenten untersuchen wir realistischere Verkehrssimulationen, indem

wir nicht reproduzierbare Stauereignisse betrachten. Wir st

�

oren den Flu� auf einem Stra�enab-

schnitt zwischen 8:00 Uhr und 9:00 Uhr durch Herabsetzen der Geschwindigkeitsbeschr

�

ankung

von 4 auf 1 [site/sec] in CA-Einheiten. In der Realit

�

at k

�

onnte dies zum Beispiel durch einen Unfall

oder durch eine Baustelle verursacht werden. Der entscheidende Punkt ist, da� keiner der Fahrer

im voraus von der St

�

orung wei�. Deswegen gibt es auch keine M

�

oglichkeit f

�

ur den externen Rou-

tenplaner entsprechend zu reagieren. Die Simulationsergebnisse zeigen, da� bereits der verminderte

Durchu� auf einem Stra�enabschnitt zu einer merklichen Verminderung des Gesamtdurchsatzes

f

�

uhrt. Online-Routing mit kleinen Marktanteilen behebt dieses Problem, allerdings f

�

uhren gr

�

o�ere

Marktanteile wieder erneut zu erh

�

ohten Reisezeiten.

Sodann erh

�

ohen wir die Anzahl der St

�

orungen von eins auf zehn. Dabei zeigt das System einen

betr

�

achtlich niedrigeren Durchsatz noch bis hin zu 20% Marktanteil. Ab zwanzig Prozent verbessert

sich die Situation des Systems au�allend. Und auch f

�

ur gr

�

o�ere Anteile bleibt der positive Trend

bestehen: Wir erhalten zunehmend k

�

urzere Reisezeiten bis zu Marktanteilen von 90%. In dieser

Hinsicht unterscheidet sich das stark gest

�

orte System von allen anderen bis jetzt untersuchten

Szenarien. Es bleibt zu

�

uberlegen, ob das gleichzeitige Auftreten von zehn St

�

orungen in einem

solch kleinen Netzwerk nicht

�

ubertrieben wirkt. Aber selbst wenn die Realit

�

at zwischen einer und

zehn St

�

orungen liegt, zeigen die Ergebnisse, da� die Menge an nicht-reproduzierbaren St

�

orungen

ein wichtiger Aspekt f

�

ur den Erfolg eines Online-Routing-Verfahrens im Bezug auf die Verbesserung

der Gesamtsituation ist. In den hier vorgestellten Simulationen werden Fahrer immer als \erfahren"

angesehen. Etwaige Verbesserungen f

�

ur Fahrer, die nicht mit dem Gebiet und dem Stauaufkommen

vertraut sind, bleiben noch zu untersuchen.

Kapitel 6 | Paralleles Rechnen

Im letzten Kapitel liegt das Hauptgewicht auf den rechnerischen Aspekten der Verkehrssimulation.

Durch Betrachtung von einfachen Parametern des Stra�ennetzwerkes, z.B. Anzahl der Kreuzungen

und Stra�enabschnitte, und der Hardware, z.B. Kommunikationsbandbreite und -latenz, k

�

onnen wir

eine obere Schranke f

�

ur die parallele E�zienz der Simulation herleiten. Es zeigt sich, da� bei Bus-

Kommunikationsnetzen, die in vielen Shared-Memory-Systemen eingesetzt werden, hohe E�zienzen

nur f

�

ur kleine und mittlere Rechnergr

�

o�en bis 64 CPUs erreichbar sind. Eine weitere Verbesserung

kann nur auf Rechnern mit einem zweidimensionalen Kommunikationsnetzwerk erreicht werden.

Der Anhang A enth

�

alt eine Beschreibung der Parallel Toolbox, die zur Parallelisierung verwen-

det wird. Mit ihrer Hilfe ist ein dynamisches Load-Balancing nach dem Prinzip der Domain-

Decomposition-Methode mit PVM als Message-Passing Bibliothek m

�

oglich. Es ist das erste Mal,

da� ein Verkehrsnetz der Gr

�

o�e der Bundesrepublik in Echtzeit

4

simuliert werden kann. Dieser

Ansatz erlaubt sowohl die Verwendung eines Shared-Memory-Rechners, wie z.B. der SGI Power

Challenger mit 16 CPUs als auch eines Workstation-Clusters von 12 SUN Sparc 5, das ungef

�

ahr

die gleiche Rechenleistung liefert. Dar

�

uber hinaus erlaubt die Toolbox das Einf

�

ugen und Entfernen

von Rechnern w

�

ahrend der Laufzeit der Simulation.

4

Echtzeit bedeutet, da� eine Sekunde der Simulationszeit in einer Sekunde simuliert werden kann.
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Es bleibt zu erw

�

ahnen, da� trotz der zunehmenden Rechengeschwindigkeit moderner Computer

Verkehrssimulationen weiterhin eine gro�e Menge an Rechenzeit verbrauchen. F

�

ur die in den Ka-

piteln 4 und 5 vorgestellten Ergebnisse waren allein ca. 630 Stunden paralleler Rechenzeit auf

6 CPUs und ca. 130 Stunden sequentieller Rechenzeit auf einer CPU notwendig. Wenn der Mikro-

simulator nicht parallelisiert worden w

�

are, h

�

atte eine einzelne CPU mit 250 [MHz] 3900 Stunden

ununterbrochen gerechnet. Das entspricht einem Zeitraum von f

�

unfeinhalb Monaten.
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Chapter 1

Introduction

Over the last decades, the world economy has constantly grown resulting in a continuously increas-

ing demand for transportation. This is true for both goods and people. Mobility | as a sign of

independence | is commonly regarded as one of the most important factors of the quality of life.

In 1995, there were 40.4 million vehicles registered in Germany which corresponds to one vehicle

for every other citizen [40]. It is not surprising that tra�c has become an important factor in our

daily lives.

Lately, however, we have been experiencing more and more of the downside of vehicular tra�c.

As street networks have not been extended at such a pace as the demand for transportation, the

occurrence of tra�c jams has become a major problem in densely populated areas. The resulting

delay has direct and indirect consequences:

� Time spent \on the road" can generally not be used for productive work. People who have to

travel professionally lose part of their income through tra�c jams. Also, there is an indirect

economic e�ect: being con�ned to a car in a tra�c jam is a stressful situation which reduces

the ability to work e�ciently once the work place has been reached.

� Vehicles stalled in tra�c jams use additional fuel. This is not only another cost factor to

drivers, but also causes damage to the environment through pollution.

� Recurrent congestion largely restricts the independence of drivers. Instead of adjusting trips

to activities, drivers have started to plan their activities carefully in order to avoid congestion.

Since the construction of new streets is either �nancially not a�ordable or politically unsupportable

1

it has become more and more important to use the existing network more e�ciently. There are

three di�erent time-scales at which one can inuence the e�ciency:

a) Long term considerations (over years) refer to the construction of new infrastructure. Here,

it is important to decide where to add the infrastructure to obtain the best overall bene�t.

1

This is especially true for European countries.
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b) On smaller time-scales like days or weeks, one can try to analyze the impact of temporary

measures such as road constructions or road blocks. Moreover, sudden, non-recurrent peaks of

the demand structure can be investigated: additional tra�c caused by simultaneous cultural

events (i.e. concerts or sports events).

c) The lower end of the time-scale is dominated by decisions made just before or during a

trip. So-called Advanced Tra�c Management/Information Systems (ATMS/ATIS) analyze

the current tra�c situation and give advice to drivers on how to avoid tra�c jams.

In all cases, tra�c simulation has proven to be an important tool to model and analyze the tra�c

state. In this thesis, we will concentrate on di�erent aspects of tra�c simulation on modern

computer architectures.

In the following chapter we will describe models handling tra�c on a single multi-lane street

segment. The Cellular Automaton (CA) model for tra�c ow on a link developed by Nagel and

Schreckenberg will serve as a starting point. The CA rule-set will be extended to allow for multi-

lane tra�c to capture lane-changes. We will present results obtained from simulations of tra�c on

loops with periodic boundary conditions.

In Chapter 3 the CA multi-lane tra�c segment will be used as one of the building blocks of the

micro-simulation PAMINA for tra�c in street networks. We will also present the structure of other

components, such as highway junctions and city intersections. As a �rst test we will use a route-set

consisting of individual routes generated for the TRANSIMS

2

case-study to drive the simulation.

Tra�c lights and speed-limits will serve as switches to inuence the \�delity" of the simulation. We

will investigate the phenomenon of grid-locks and how they are inuenced by the choice of �delity.

PAMINA will be used in Chapter 4 to iteratively adapt route-sets from a given initial route-set

based upon an origin-destination matrix. The link travel-times generated by the micro-simulation

will serve as feedback to improve the dynamic performance estimate for each individual link. We will

see that the speed of the relaxation process can be monitored e�ectively by inspecting the overall

travel time of all vehicles in the simulation area (called study-area). We will identify parameters

that accelerate the relaxation process without having an impact on the �nal state. Two artifacts

which occurred during some iterations and their remedies will be pointed out. The chapter will be

concluded by a comparison of three micro-simulations processing route-sets for the same study-area.

In Chapter 5 the previously generated route-sets will be used to conduct an experiment of online

routing. During a simulation run a certain fraction of all drivers will be allowed to access online

information. If a driver forecasts an increased trip time due to an impending congestion, a shortest

path algorithm computes a su�ciently good alternative route. The main issues of this chapter will

be the questions, a) how much the quality of the re-routing process will depend on the market

saturation of the online service, and (b) how much impact (both positive and negative) the system

will have on drivers who do not have access to the re-routing service.

The computational aspects of tra�c simulation will be the main issue of Chapter 6. Based upon

simple parameters which can be obtained from the street network and the underlying hardware, an

2

For a description of the TRANSIMS project, see Section 3.1.
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upper bound for the parallel e�ciency will be derived. Also, this chapter we will present benchmark

results of the PAMINA micro-simulation both for dynamic load-balancing and static load-balancing

with external load feedback.

In Chapter 7 we will summarize the work presented in this thesis and discuss the results obtained

from the simulation runs. Whenever applicable, we will give suggestions as to how the micro-

simulation can be improved in future experiments.

There are two appendices. The �rst appendix deals with the technical implementation of the

PAMINA micro-simulation. The second one contains details related to tra�c simulation and the

iterative process used in Chapter 4.

An online version of this thesis is available at the URL:

http://www.zpr.uni-koeln.de/~mr/dissertation/

The page also contains instructions on how to retrieve the source code of the micro-simulation

PAMINA and its User's Guide.



Chapter 2

Tra�c Simulation On a Link

As a preparation for the simulation experiments of subsequent chapters we would like to give a

short instruction to tra�c ow on a single link. We deliberately exclude all phenomena that are

caused by complex interactions of street networks. For most considerations, one can assume that

this single link has periodic boundary conditions: vehicles basically move in circles without ever

reaching a network element such as an intersection or a junction.

We start out by describing fundamental microscopic models with individual vehicles with spe-

cial emphasis on the Nagel-Schreckenberg cellular automaton model of tra�c ow, followed by

macroscopic models that only consider vehicle densities. Later, we introduce and de�ne a two-lane

extension to include lane-changing and passing. We conclude this chapter by presenting simulation

results for the two-lane model.

2.1 Existing models

2.1.1 Microscopic models

One of the goals of a microscopic model of tra�c ow is to provide a set of equations allowing to

compute the current velocity of a vehicle (or acceleration respectively) based upon historic data

(e.g. previous velocity) and additional data (e.g. location of the vehicle ahead). These equations

that are often derived from assumptions about the behavior of human drivers can be used in

simulations of real world tra�c.

14
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Car following

Considering that drivers need a certain time � to adapt their velocity, real-world car-following

behavior can be modeled by assuming a velocity{dependent

1

gap �x(t)

v(t+ �) = C�x(t): (2.1)

By derivating Equation 2.1 once with respect to time, one obtains

a(t + �) = C�v(t): (2.2)

which can be expanded with respect to time yielding

a(t) = �

�1

[V (�x(t); :::)� v(t)] (2.3)

as a relation between the current velocity and the acceleration a(t). It can be seen as an exponen-

tially decreasing approach to some gap-dependent function V (�x(t)) with halftime � .

Discrete models

In recent times, simulations of tra�c ow based on cellular automata (abbreviated as \CA", see

[123] for a review) have gained considerable importance. Originating from the fundamental work by

Wolfram [133], CAs had already been used in many �elds of physics as a means for fast computation.

As a rule, a problem previously de�ned in continuous time and space is transferred into a time-

discrete counterpart de�ned on a spatial grid. A grid site is either occupied by a particle or it

is empty. Any interactions between particles are modeled by next-neighbor relationships between

grid sites.

Applying this approach to tra�c ow, Nagel and Schreckenberg [87] extended the range of rules

from nearest neighbors to a range of �ve grid sites and introduced six discrete velocities 0 : : : 5.

The simulation results exhibited a striking resemblance to realistic tra�c behavior. For v

max

= 1

Schadschneider and Schreckenberg found an analytic solution [109]. For higher v

max

, these analytic

approaches lead to good approximations for the average behavior [110]. Further analytic results

can be found in [15]. Nagel [80, 81] pointed out the strong connections between particle hopping

models and uid-dynamical approaches for tra�c ow.

Within the TRANSIMS project, Barrett et al. have considered using a �ner grid than 7.5 [m]

for their simulations [6]. Reducing the grid-size to 3.75 [m] allows for a higher maximum vehicle

occupation on city streets and the implementation of more realistic vehicle lengths.

Krauss [56] started out with the original CA single-lane rules in mind and transferred them into a

space-continuous

2

version. The approach allows higher maximum ows and independent handling

1

This results in the rule of thumb to have at least a gap of v=2 meters to the car ahead, if v is given as the current

speed in [km/h].

2

The location and the velocity of a vehicle are continuous, but the update interval is still discrete.
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of the stochasticity in free ow and congested ow regimes, both of which simplify the validation

of the model parameters to real-world measurements. In another modi�cation [57] the rate at

which vehicles could brake was reduced to more realistic

3

values. Simulations yielded a hysteresis

for the ow-density dependency that had previously been observed in real-world tra�c: during

the recovery from a jam, the ow on a link never reaches the previous maximum again unless the

density drops considerably below the critical density at least once. This e�ect is also know as

capacity gap. A review can be found in [55].

2.1.2 Macroscopic models

Link performance functions

Tra�c ow models models are usually calibrated with real-world measurements by trying to match

the so-called fundamental diagrams, de�ned by either j = j(%) or j = j(v). The shape of these

functions is an emergent property of the underlying model.

If the fundamental diagrams cannot be su�ciently adjusted by parameters, it is questionable if

basic properties of tra�c ow are conserved. Therefore, a straight-forward alternative approach is

to prescribe the relationships. To do so, one has to depart from the notion of local densities and

velocities. Links are either treated as one unit or at least as a coarse grid of minimum length. In

the �rst case, for example, a link performance function [115] returns the travel-time t with respect

to the current ow j on link, its capacity c and a free-ow travel-time t

0

:

t(j) = t

0

�

1 + J

j

c� a

�

: (2.4)

The parameter J can be used for calibration. It is obvious that in Equation 2.4 any information

about the distribution | let alone the interaction | of vehicles is lost. It does, however, reect

the basic relationship between travel-time and ow: the expected time increases sharply as the ow

approaches capacity. Link performance functions have been used in network simulation models

because of their high computational speed.

Queueing models

It is possible to neglect the interactions of vehicles on a link while maintaining individual information

of vehicles. This is achieved by handling vehicles in queues. Upon entry into a link, link performance

functions are used to determine the estimated travel-time through a link according to the vehicle's

individual properties. The resulting scheduled arrival time at the end of the link is used to insert

the vehicle into a time-sorted exit queue. In every simulation time-step, the queue is checked for

vehicles that are scheduled to exit from the link. Provided there is enough room in the destination

segments, the vehicles will be removed from the queue. See [116] for a review and [41] for a practical

implementation of this approach.

3

In the Nagel-Schreckenberg model vehicles traveling at 120 [km/h] can come to a full stop within one second!
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Continuous models

One way to look at tra�c is related to ow of liquids. Instead of considering individual vehicles

(particles), the dynamics are de�ned by the vehicle density %(x; t), the vehicle velocity v(x; t), and

the vehicle ow j(x; t) = %(x; t)v(x; t). To allow for consistent results | as in uidynamics | both

the continuity equation

@

x

% + @

x

j = D@

2

x

% (2.5)

and the momentum conservation equation

@

t

v + v@

x

v = F=m+ �@

2

x

v (2.6)

have to hold. We already included di�usion terms for both. With a given relation for j(x; t) =

j(%(x; t)), Lighthill and Whitham [61] found a solution for Equation 2.5 (for D = 0) exhibiting both

laminar ow and discontinuities called shock waves. For D > 0 the discontinuities disappeared

resulting in \smeared" shock waves.

K

�

uhne and others (for a review see [80, 81]) combined Equations 2.3 and 2.6 to obtain

@

t

v + v@

x

v =

1

�

[V (%)� v]�

c

2

0

%

@

x

% + �@

2

x

v: (2.7)

The cell transmission model [23] (as an actual inplementation of the Lighthill/Whitham model)

splits a link into cells with a �xed length l. For a given update interval t and a maximum velocity

v

max

, the cell length is usually selected as l = v

max

=t, so that the fastest vehicle can only transverse

a maximum of one cell per update. Additional link parameters are the current number of vehicles on

the link N(t) and the maximum inow of vehicles into the link Q(t). As with the link performance

function, the cell transmission model completely neglects vehicle interactions. It does, however,

give a coarse vehicle distribution along the link.

Although the description of microscopic particles as continuous medium is capable to reproduce

some of the basic phenomena, it has important disadvantages. The whole eet of vehicles is consid-

ered to be homogeneous with respect to the characteristics speed, acceleration, and deacceleration.

A realistic eet, however, consists of several types of vehicles. A microscopic approach handles this

requirement in a \natural way", that is by associating additional characteristics with individual

objects. In a continuous framework the eet would have to be represented by partial densities

each of which de�ned through a set of equations. Another disadvantage becomes evident when

street segments have to be combined to networks. De�ning boundary conditions for the di�erential

equations at the ends of segments can only be regarded as an inadequate description of the e�ects

occuring at net elements, such as tra�c lights, queueing, and interference.

2.1.3 Single lane model

For the convenience of the reader we would like to outline the single lane CA model

4

introduced by

Nagel and Schreckenberg. The system consists of a one dimensional grid of L sites with periodic

4

Wimmersho� provides an online demo for the single-lane CA model [132].
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boundary conditions. A site can either be empty, or occupied by a vehicle of velocity zero to v

max

.

The velocity is equivalent to the number of sites that a vehicle advances in one update | provided

that there are no obstacles ahead. Vehicles move only in one direction. The index i denotes the

number of a vehicle, x(i) its position, v(i) its current velocity, v

d

(i) its maximum speed, pred(i)

the number of the preceding

5

vehicle, gap(i) := x(pred(i)) � x(i) � 1 the width of the gap to the

predecessor. Note that in the original model all vehicles had the same maximum velocity v

max

. We

now allow for di�erent desired velocities v

d

(i) to include an inhomogeneous eet. At the beginning

of each time-step the rules are applied to all vehicles simultaneously (parallel update, in contrast

to sequential updates which yield considerably di�erent results). Then the vehicles are advanced

according to their new velocities.

� IF v(i) < v

d

(i) THEN v(i) := v(i) + 1 (S1)

� IF v(i) > gap(i) THEN v(i) := gap(i) (S2)

� IF v(i) > 0 AND rand < p

d

(i) THEN v(i) := v(i)� 1 (S3)

S1 represents a constant acceleration until the vehicle has reached its maximum velocity v

d

. S2

ensures that vehicles having predecessors in their way slow down in order not to run into them. In

S3 a random generator is used to decelerate a vehicle with a certain probability modeling erratic

driver behavior. The free{ow average velocity is v

max

� p

d

(for p

d

6= 1).

2.1.4 Multi-lane models

Traditional car-following theory (e.g. [43]) by and large never dealt with multi-lane tra�c. Modern

microscopic tra�c simulation models (e.g. [10, 16, 38, 67]) obviously handle multi-lane tra�c by

necessity. Cremer and coworkers [21, 111] even treat multi-lane tra�c in the context of cellular

automata models. All these papers approach the problem by using heuristic rules of human be-

havior, without checking which of these rules exactly cause which kind of behavior. In validations

then (e.g. [67]), it often turns out that certain features of the model are not realistic; and because

of the heuristic approach it is di�cult to decide which rules have to be changed or added in order

to correct the problem.

For that reason, a more systematic approach is justi�ed. Our approach here is to search for a

minimal set of rules which reproduces certain macroscopic facts. The advantage is that relations

between rules and macroscopic behavior can be more easily identi�ed; and as a welcome side-e�ect

one also obtains higher computational speed.

We choose CA models as starting point for this investigation because their highly discrete nature

reduces the number of free parameters even further. It is clear that a similar analysis could be

applied to continuous microscopic models, hopefully bene�ting from the results obtained here.

Nagatani examined a two-lane system with completely deterministic rules and v

max

= 1 [73, 76],

where cars either move forward or change lanes. A very unrealistic feature of this model are states

5

A precedes B. in this context means that A is followed by B
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in which blocks of several cars oscillate between lanes without moving forward at all. This was

corrected by introducing randomness into the lane changing [74]. Latour has developed the two-

lane model which served as the basis for the one discussed here [58]. In [102] a more elaborate

rule set was used for two-lane tra�c which reproduced the phenomenon of increased ow with an

imposed speed limit. Most queueing models are not truly multi-lane, but emulate multiple lanes

by switching the order of vehicles on one lane whenever a passing would have occurred in reality

[3]. Gawron [41] uses the number of lanes to scale the capacity of link queues. The model, however,

does not include any explicit interactions between lanes.

2.2 A generic two-lane model

Since a realistic eet is usually composed of vehicle types having di�erent desired velocities, the

single lane model is not capable of modeling realistic tra�c behavior. Introducing such di�erent

vehicle types in the single lane model only results in platooning with slow vehicles being followed by

faster ones and the average velocity reduced to the free{ow velocity of the slowest vehicle [9, 75].

We introduce a two-lane model [102, 105] consisting of two parallel single lane models with periodic

boundary conditions and four additional rules de�ning the exchange of vehicles between the lanes.

The update step is split into two sub-steps:

1. Check the exchange of vehicles between the two lanes according to the new rule set. Vehicles

are only moved sideways. They do not advance. Note that in reality this sub-step regarded

by itself is infeasible since vehicles are usually incapable of purely transversal motion. Only

together with the second sub-step do our update rules make sense physically.

This �rst sub-step is implemented as a strictly parallel update with each vehicle making its

decision based upon the con�guration at the beginning of the time-step.

2. Perform independent single lane updates on both lanes according to the single lane update

rules. In this second sub-step the resulting con�guration of the �rst sub-step is used.

A somewhat generic starting point for modeling passing rules is the following: (T1) The driver

looks ahead if somebody is in his way. (T2) The driver looks on the other lane if the situation is

better there. (T3) The driver looks back on the other lane if somebody would be obstructed by

the lane change.
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Figure 2.1: Two-lane CA model: geometry describing lane-changing rules | The

vehicle (denoted by a �lled circle) will change to the right (lower) lane if any of the sites marked with \O" is

occupied and the sites marked with \E" are empty. The vision ranges are l for look-ahead in the current lane, l

o

look-ahead in the other lane, and l

o;back

for look-back in the other lane.

Technically, we keep using gap(i) for the number of empty sites ahead in the same lane, and we

add the de�nitions of gap

o

(i) for the forward gap on the other lane, and gap

o;back

for the backward

gap on the other lane. Note that if there is a vehicle on a neighboring site both return -1. The

generic multi-lane model then reads as follows. A vehicle i changes to the other lane if all of the

following conditions are ful�lled (see Figure 2.1):

� gap(i) < l (T1),

� gap

o

(i) > l

o

(T2),

� gap

o;back

(i) > l

o;back

(T3), and

� rand() < p

change

(T4).

l, l

o

, and l

o;back

are the parameters which decide how far a driver looks ahead in his own lane, ahead

in the other lane, or back in the other lane, respectively.

The most important parameters of the two-lane model are symmetry, stochasticity, and direction

of causality. In Table 2.1 we associate the parameters of our rule set with the previously mentioned

characteristics.

characteristic yes no

symmetry T1 for L!R no T1 for L!R

stochasticity prob

c

< 1 prob

c

= 1

backward causality l

o;back

> 0 l

o;back

= 0

Table 2.1: Characteristics of the two-lane CA rules

Symmetry: The rule set de�ning the lane changing of vehicles can be both symmetric and asym-

metric. The symmetric model is interesting for theoretical considerations whereas the the

asymmetric model is more realistic.
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Stochasticity: The single lane model proved that a strictly deterministic model is not realistic.

The model did not show the desired spontaneous formation of jams. In the case of the two-

lane model the lack of stochasticity in combination with the parallel update results in strange

behavior for slow platoons occupying either lane: since none of the vehicles has reached its

maximum velocity and all evaluate the other lane to be better there is collective change

sidewise which is usually reversed over and over again until the platoon dissolves or the

platoon is passed by other vehicles.

We introduce stochasticity into the two-lane rule set to reduce the e�ective number of lane

changes and thus dissolve those platoons. The simulation revealed that this e�ect is equally

important in the asymmetric free{ow case (see Section 2.2.2).

Direction of Causality: In the single lane model a vehicle only looks ahead (= downstream =

in the direction of vehicle ow) so that causality can only travel upstream (= in the direction

opposite of vehicle ow). A reasonable lane changing rule must include a check of sites

upstream in order not to disturb the tra�c of the destination lane. This would result in

causality traveling downstream.

2.2.1 A lane changing model

As an example, we start with l = v + 1, l

o

= l, l

o;back

= v

max

= 5, p

change

= 1, and p

d

= 0:5. Both l

and l

o

are roughly proportional to the velocity, whereas looking back is not. l

o;back

depends mostly

on the expected velocity of other cars, not on one's own.

In the symmetric version of this model, cars remain in their lane as long as they do not \see"

anybody else. If they see somebody ahead in their own lane (i.e. gap < v+1), they check the other

lane to see if they can switch lanes and do so if possible. Afterwards, if they are satis�ed, they

remain in this lane until they become dissatis�ed again.

In the asymmetric version, cars always try to return to the right lane, independent of their situation

on the left lane.

In the next section we will present some results obtained from the described rule set.

2.2.2 Some simulation results

Space-time-plots both of the symmetric and the asymmetric version are shown in Figures 2.2

and 2.3. For these plots, we simulated a system with a length of 12,000 sites of which we plot

400 sites in 400 consecutive time-steps. The density is 0.09 which is slightly above the density of

maximum ow (see Figure 2.4). Vehicles go from left to right (spatial axis) and from top to bottom

(time axis). Tra�c jams appear as solid areas with steep positive inclination whereas free ow

areas are light and have a more shallow negative inclination. Each plot is split into two parts: the

left part containing the left lane and the right part containing the right lane, respectively.
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Figure 2.2: Space-time plot for two-lane CA-model: symmetric, l

o;back

= 5 | Space is

plotted left to right. Time is plotted top to bottom. The symmetric case exhibits laminar ow interspersed with

tra�c jams. The ow on both lanes (left and right halves) looks equal.

Figure 2.3: Space-time plot for two-lane CA-model: asymmetric, l

o;back

= 5 | In the

asymmetric case the left and right lanes show di�erent densities. Vehicles are more likely to be found on the right

lane. Short trajectories on the left correspond to passing events.
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In Plot 2.3 (left lane) the large number of lane changes is indicated by the high frequency of short

vehicle life lines appearing and disappearing: These are vehicles that temporarily leave the right

lane to avoid an obstacle. They go back to their old lane as soon as the obstacle has been passed.

It will be con�rmed quantitatively that indeed the rate of lane changes is much higher for the

asymmetric model than for the symmetric model.

Before going on, we would like to describe our standard simulation set-up for the following obser-

vations. Note that quantitative simulation results were obtained with a much larger system than

the qualitative space-time plots. We simulated a system of length

L = 133; 333 sites � 1000 km

with closed boundary conditions and tra�c running in a loop. We started with random initial

conditions, i.e. N cars were randomly distributed on both lanes around the complete loop with

initial velocity v

0

= 0. Since the system is closed, the average density per lane is now �xed at

h�i

L

=

N

2L

;

where the \2" stands for the number of lanes.

The simulation was then started, 1000 time-steps were executed to let the transients die out, and

then the data collection was started. The ow which is found in the fundamental diagrams is both

space and time

6

averaged as follows

hji

L;T

=

1

T

1

L

L

X

i

T=5

X

t

v(i; 5t) :

Values for lane change frequency and ping-pong lane change frequency are obtained by the same

averaging procedure except that statistics are gathered every time-step, since by de�nition ping-

pong lane changes occur in subsequent time-steps.

We usually used T = 5000, and the same procedure was repeated for each density found in the

plots. With a resolution of �% = 0:01 an average plot took about 22 hours of computation time on

a Sparc 10 workstation.

Flow behavior

By comparing these models with each other and with earlier results, we make the following obser-

vations (Figure 2.4 unless otherwise noted):

(i) Both for the symmetric and the asymmetric version, maximum ow is higher than twice the

maximum ow of the single lane model (Figure 2.5). This is to say that, in spite of the

additional disturbances which the lane changing behavior introduces into the tra�c ow,

the general e�ects are bene�cial, probably by diminishing large deviations from \good" ow

patterns.

6

We gather statistics every �fth time-step only, since subsequent time-steps are correlated.
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Figure 2.4: Two-lane model ow for l

o;back

= 5, p

change

= 1:0 | While in the asymmetric

model the ow on the right lane is considerably higher than in the left lane, the average ow is exactly as high as

in the symmetric case.
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Figure 2.5: Comparison of ows between single-lane and two-lane models | The two-

lane model has a higher maximum ow than the single-lane model both in the symmetric and the asymmetric cases.

The other lane can be used to locally resolve minor congestion through lane changing.
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(ii) Both for the symmetric and the asymmetric version, the combined two-lane ow reaches a

maximum at �

jmax

� 0:08, which is at or near a sharp bend of the ow curve.

(iii) For the asymmetric model, ow on the left lane keeps increasing slightly for � > �

jmax

, but

this is over-compensated by the decreasing ow on the right lane.

(ii) and (iii) together lead one to the speculation that maximum ow in the asymmetric case

here actually is connected to a \critical" ow on the right lane and a \sub-critical" ow on

the left lane. Any addition of density beyond here leads to occasional break-downs on the

right lane and thus to a much lower ow there. Obviously, such interpretations would have

to be clari�ed by further investigations, and the word \critical" would have to be used with

more care, as is pointed out in [83] for the single lane case.

(iv) For both lanes combined, the curves for symmetric and asymmetric tra�c actually look

similar. If the above interpretation is right, this means that the overall density of maximum

ow is a fairly robust quantity, but one can stabilize one lane at a much higher density if this

density is taken from the other lane.

(v) At very low densities in the asymmetric case, ow on the left lane, j

left

, only slowly builds

up. This is to be expected, since at least two cars have to be close to each other to force one

of them into the left lane, leading to a mean �eld solution of j

left

(�) / �

2

for �! 0.

(vi) For � > 0:4, ows on both lanes in the asymmetric models are very similar and similar to the

lane ows in the symmetric models.

Lane changing behavior

To obtain some further insight into the lane changing dynamics, Figure 2.6 shows the frequency of

lane changing both for the asymmetric and the symmetric model.

(i) Note that in the asymmetric case there is a sharp bend in the curve, which is not found for

the symmetric case. This bend is also near �

jmax

, giving further indication that the dynamics

above and below �

jmax

are di�erent.

(ii) For the symmetric case, lane changing occurs with less than half the frequency compared to

the asymmetric case.

(iii) In the symmetric case, the lane changing frequency per site for small densities increases

approximately quadratically up to rather high densities, whereas the same quantity for the

asymmetric model grows approximately linearly for fairly low densities. This suggests that

for the symmetric case a mean �eld description of interaction, P (change) / �

2

, would be

valid up to comparably high densities. For the asymmetric case, it is fairly obvious that this

does not work. Since the vehicles have a strong tendency to be in the right lane, a density

of 0.04 per lane would produce a density of 0.08 if everybody were on the right lane. Yet,

� = 0:08 is known to be already a density of high interaction in single lane tra�c. Since this
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Figure 2.6: Simple lane changes for l

o;back

= 5 | Introducing an additional probability of C = 0:5

for lane-changing does not reduce the frequency of lane-changes proportionally (with respect to the original case

with C = 1:0).
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Figure 2.7: Lane changes per normalized by density for l

o;back

= 5, p

change

= 1:0 |

The frequency of lane changes per vehicle density shows a signi�cant peak below the critical density of the two-lane

model.

high interaction tends to spread vehicles [109, 110], each additional vehicle simply adds its

own share of lane changes, making the relation roughly linear.
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Figure 2.8: Ping-Pong behavior in two-lane CA-model | Left: In high density regimes

vehicle collectively change lanes without advancing (except for the �rst vehicle of the platoon). Right: In low

density regimes the asymmetric model exhibits a high frequency of unsuccessful passing attempts. This is due to

the stochastic change of velocity between v

max

and v

max

� 1.

(iv) The maximum number of lane changes occurs at densities much higher than �

jmax

. The

lane changing probability per vehicle, however, reaches a maximum below the critical density

(Figure 2.7).

Ping-pong lane changes

An artifact of the previously described algorithm is easily recognizable when one starts with all

cars on the same lane, say the right one. Assuming a fairly high density, all cars see somebody in

front of them, but nobody on the left lane. In consequence, everybody decides to change to the left

lane, so that all cars end up on the left lane (see left-hand side of Figure 2.8). Here, they now all

decide to change to the right lane again, etc., such that these coordinated lane changes go on for a

long time (\cooperative ping-pong e�ect"). This e�ect has already been observed by Nagatani for

the much simpler two-lane model [72, 73].

One way around this is to randomize the lane changing decision [74]. The decision rules remain

the same as above, but even if rules T1 to T3 lead to a yes, it is only accepted with probability

p

change

. With this fourth lane changing rule, patterns like the one above are quickly destroyed.

In order to quantify the e�ects of a di�erent p

change

, simulations with p

change

= 0:5 were run. The

observations can be summarized as follows:

(i) The ow-density curves are only marginally changed (Figure 2.9).

(ii) The frequency of lane changes is decreased in general, but, except for � < �

jmax

in the asym-

metric case, by much less than the factor of two which one would naively expect (Figure 2.6).

This implies, that there is usually a dynamic reason for the lane change: if it does not occur

in one time-step due to p

change

< 1, then it is re-tried in the following time-step, etc.

(iii) For a better quanti�cation in how far a p

change

< 1 actually changes the pattern of vehicles

changing lanes back and forth in consecutive time-steps, we also determined the frequency of

\ping pong lane changes", where a car makes two-lane changes in two consecutive iterations.

Obviously, there are left-right-left (lrl) and right-left-right (rlr) ping-pong lane changes.
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Figure 2.9: Flow in two-lane model for l

o;back

= 5 and di�erent p

change

| Reducing the

lane changing probability p

change

also reduces the maximum ow slightly for both the symmetric and asymmetric

cases. The change, however, is rather small. Note the magni�ed scale of the y-axis compared to Figure 2.4.
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Figure 2.11: Slow and fast ping-pong lane changes | Most ping-pong lane changes of the

asymmetric model are caused by the \tailgating e�ect" of fast vehicles with v � 4.

Figure 2.10 shows that reducing the probability to change lanes, p

change

, from 1 to 1/2 has the

following bene�cial e�ect: The number of ping-pong lane changes decreases by about a factor of

�ve. The TRANSIMS micro-simulation [89] takes advantage of this result by rejecting lane-changes

with a small probability.

Yet, for the symmetric case, the frequency of ping-pong lane changes is more than an order of

magnitude lower in both cases anyway. This indicates that in simulations starting from random

initial conditions, the cooperative e�ect as described above as cooperative ping-pong e�ect does

not a�ect the statistical frequency, because this e�ect should be the same for the symmetric and

the asymmetric model. Instead, the cause of the ping-pong lane changes in the asymmetric model

is as follows (refer to the right-hand side of Figure 2.8): Assume just two cars on the road, with

a gap of 5 between them. With respect to velocity, both cars are in the free driving regime, and

their velocities will uctuate between 4 and 5. Now assume that the following car has velocity 5

from the last movement. That means that it looks 6 sites ahead, sees the other car, and changes to

the left lane. Then, assume that in the velocity update, the leading car obtains velocity 5 and the

following car obtains velocity 4. Then, after the movement step, there is now a gap of 6 between

both cars, and in the lane changing step, the follower changes back to the right lane. And this can

happen over and over again in the asymmetric model, but will not happen in the symmetric model:

Once the following car in the above situation has changed to the left lane, it will remain there until

it runs into another car on the left lane.

To investigate this second kind of ping-pong lane changes we ran simulations recording whether

a ping-pong lane change was made at low velocities 0 � v � 3 or high velocities 4 � v � 5.

Figure 2.11 shows a very distinct peak for fast ping{pong{changes at low densities whereas slow
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Figure 2.12: Flow in Latour's model 1 with l = v | Reducing the look-ahead to v causes

artifacts for stalled vehicles. They will not change to the left lane because of rule T1, even if the left lane is vacant.

Above density 0.75 there is no measurable ow on the right lane. This �gure was taken from [58].

ping{pong{changes have a lower peak at higher densities similar to that of the symmetric case.

This gives a strong indication that most lane changes are actually caused by the \tailgating e�ect"

as described above, which is an artifact of the rules. It is, though, to be expected that this behavior

does not have a strong inuence on the overall dynamics. The condition occurs mostly in the free

driving regime. As soon as another car is nearby in the left lane, it is suppressed by looking back

and forward on the other lane.

2.2.3 Other parameter combinations

We would like to mention two other parameter combinations. They are presented because they

generate artifacts which contradict the common sense one would apply to the phenomena of tra�c

ow.

(i) Latour [58] reduced the lookahead to l = v instead of l = v+1. While this change is negligible

for vehicles at higher velocities, it becomes crucial to vehicles stopped in a jam: assuming

the current velocity to be zero the vehicle looks zero sites ahead and decides to remain in

the current lane due to the non{ful�lled rule T1. This state will persist until the predecessor

moves even if the other lane is completely free! Figure 2.12 shows the impact of the reduced

look ahead on overall ow: for density � > 0:75 there is no perceptible ow in the right lane

which corresponds to a tra�c jam that occupies more or less the whole right lane.
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Figure 2.13: Flow in two-lane model for p

change

= 1:0 and di�erent l

o;back

| Reducing

the look-back range from 5 to 0 considerably reduces the maximum ow, especially in the asymmetric case.

(ii) In the second case we reduced the look-back to l

o;back

= 0. Vehicles no longer check whether

their lane changing could have a disadvantageous e�ect on the other lane which corresponds to

a very egoistic driver behavior. In real-world tra�c, insu�cient look-back is also an important

cause for accidents. Figure 2.13 shows ow density relationships for look-back l

o;back

= 5 and

l

o;back

= 0. It is obvious that the decrease in look-back also decreases the maximum ow at

critical densities. Moreover l

o;back

= 0 splits the curves of the symmetric and asymmetric

cases which used to be almost identical for l

o;back

= 5: the lack of look-back is much more

disadvantageous for asymmetric than for symmetric rules.

In Figures 2.14 and 2.15 we used l

o;back

= 0 for the symmetric and asymmetric rule sets with one plot

per lane. It is clearly visible (compare to Figures 2.2 and 2.3) how l

o;back

= 0 completely disrupts

the laminar ow regime. Vehicles change lanes without looking back; and due to the formulation

of the model this behavior does not cause accidents, but it causes the obstructed vehicles to make

sudden stops. Since these stops are caused more or less randomly, the regime becomes much more

randomly disturbed than before, somewhat reminiscent of the Asymmetric Stochastic Exclusion

Process (see [80, 110]).

As seen before the e�ect is even more drastic for the asymmetric rule set since the number of

lane changes is higher than in the symmetric case. In Figure 2.15 with l

o;back

= 0 dynamics are

dominated by small tra�c jams caused by lane changes, while in Figure 2.2 there are still some

fairly laminar areas.
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Figure 2.14: Space-time plot for two-lane CA-model: symmetric, l

o;back

= 0 |

Reducing the look-back increases the probability for small tra�c jams. Free-ow regimes are rather short.

Figure 2.15: Space-time plot for two-lane CA-model: asymmetric, l

o;back

= 0, left +

right lanes | In the asymmetric case, the laminar ow is completely destroyed. The system is dominated by

disrupting lane-changes.
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2.2.4 Comparison to reality

Compared to reality (e.g. [67]), the lane change frequency in the asymmetric models presented here

is too high by about a factor of 10. Using p

change

= 0:1 would correct this number, but it is not a

good �x dynamically: It would mean that a driver follows a slower car on the average for 10 seconds

before he decides to change lanes. Besides, it was shown that about 90% of the lane changes in the

asymmetric models here are produced by an arti�cial \tailgating dance", where a follower changes

lanes back and forth when following another car. It remains an open question as to how much

artifacts like these can be corrected by the current modeling approach or if it will be necessary to

introduce memory: If one remembers that he just changed from the right lane to the left lane, he

will probably stay in that lane for some time before changing back.

Another defect of the models presented in this paper is that the maximum ow regime is most

probably represented incorrectly. Both measurements (e.g. [67] or Figure 3.6 in [65]) and everyday

observation show that real tra�c shows a \density inversion" long before maximum ow, that is,

more cars drive in the left lanes than in the right lanes. This e�ect is more pronounced for countries

with higher speed limits in combination with a passing prohibition resulting in a separation of faster

passenger vehicles and slower trucks. Let us denote by �

1lane

jmax

the density of maximum ow of the

single lane case. It follows for the real world two-lane case that at a certain point the left lane will

have a density higher than this density �

1lane

jmax

whereas the right lane has a density lower than �

1lane

jmax

.

When further increasing the overall density, then the ow on the left lane will decrease whereas

it still increases on the right lane. It is unclear if the net ow here increases or decreases; but it

should become clear that instabilities here are caused by the left lane �rst. This is in contrast to

the models presented here, for which the right lane reaches the critical density �rst.

2.3 New developments

Wagner, Nagel, and Wol� [130] modi�ed the two-lane models of the CA model slightly to generate

the density inversion described above. Simulations yield a cross-over between left and right lanes

at a density of approximately %

cross

� 0:06 which is well below the density %

c

� 0:15 at which the

maximum overall ow occurs. These results are similar to empirical data provided by the German

Ministry of Tra�c [121]. The model even reproduces the related density-dependent lane usage on

three lanes [60].



Chapter 3

Executing Pre-computed Routes

Recently, there has been increased interest in microscopic tra�c simulations worldwide. In contrast

to earlier implementations which could only handle small street networks in reasonable time, current

state-of-the-art implementations exploit the architecture of modern computer systems to increase

their performance considerably. Also, there has been a shift away from macroscopic underlying

tra�c models to simple microscopic ones such as the cellular automaton approach.

In this chapter we start out by giving a short overview of existing micro-simulations that are able to

execute route-sets within regional street networks. The remainder of the chapter will be dedicated

to the description of the micro-simulation PAMINA (Parallel Microscopic Network Algorithm),

which will serve as the core tool for all computations presented in this work.

3.1 Simulation models

Currently, there are several commercial and non-commercial tra�c simulation packages available.

Some [95, 96] are based on macroscopic tra�c models, which neglect individual characteristics of

vehicles including route-plans. Although their computational performance is usually higher than

microscopic models, they lack the ability to run activity-based simulations based upon route-plans.

In the following, we will outline those micro-simulations capable of executing individual route-plans.

For a more comprehensive survey of micro-simulations see [127].

NETSIM [101] was originally developed for the Federal Highway Administration. Later, it was

integrated with TRAF simulations system resulting in the new common name TRAF-NETSIM. It

puts special emphasis on handling stochasticity of driver decisions correctly, since random driver

behavior at the microscopic level is known to have a considerable impact on aggregated measure-

ments. In one test-bed [63] the whole core street network of Austin (TX) was simulated on a CRAY

vector computer.

INTEGRATION [1, 33] is a microscopic tra�c-simulation developed at the Queen's University

in Kingston, Canada. Its dynamics are based upon a car-following model with a macroscopic

calibration for the desired free speed, the speed at capacity, and the jam density of each link. The

34
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network capabilities of the simulation include among other things lane-changing, incidents, freeway

intersections, turning movement restrictions, tra�c signals, loop detectors, and vehicle probes.

DYNASMART (=Dynamic Network Assignment Simulation Model for Advanced Road Telematics,

see [18, 46]) is a micro-simulation driven by individual route-plans. It provides the capability to

explicitly model trip maker en-route decisions in response to online information.

DYNEMO [112] represents a special case within this list of tra�c-simulations. In principle, it is a

macroscopic model, since it uses segmented links with link performance functions. The necessary

input for these functions such as density and mean velocity, however, is retrieved by aggregating

over individual vehicles. Therefore, DYNEMO is capable of processing route-plans as every other

model presented here.

TRANSIMS [89, 125] is a tra�c research project funded by the American Federal Highway Admin-

istration [91]. It comprises modules to (a) generate a synthetic population from census data, (b)

generate activities from the synthetic population, and (c) generate a route-set from the activities.

The simulation itself, which is also based upon the Nagel-Schreckenberg model, was parallelized

using workstation clusters with a distributed memory programming model. A more detailed de-

scription can be found in Section 4.4.

The tra�c research e�ort FVU-NRW [90] funded by the German federal state Nordrhein-Westfalen

uses a modular tra�c simulation called PLANSIM-T [42]. Its structure corresponds to that of

TRANSIMS. Since privacy laws in Germany largely restrict access to census data for research

purposes, route-sets are more likely to be obtained from origin-destinations matrices. The ma-

trix is computed from homogeneous groups of population distributed over the simulation area.

Actual tra�c counts are used to calibrate the OD-ows, which currently still poses a problem

[129]. The micro-simulation features three built-in underlying tra�c models: (a) the original

Nagel-Schreckenberg model [97], (b) a re�ned continuous model described in [56], and (c) a low

resolution queuing model, which replaces incoming lanes by queues. PLANSIM-T uses the thread

programming paradigm on shared memory multi-processor computers.

The city tra�c simulation CASim [17, 32] developed at the university of Duisburg, Germany (also

within the framework of the FVU-NRW) uses the original Nagel-Schreckenberg CA. The simulation

can be driven by both turn counts at intersections and individual route-plans. Furthermore, it can

be inuenced by online tra�c count data which is used to perform dynamic re-routing.

The PARAMICS [16, 93] simulation developed at the Edinburgh Parallel Computing Center uses

(in its original version) a Connection Machine CM-200. New releases have been ported to message-

passing systems like the CRAY T3D/E.

3.2 Overview of PAMINA

Using the CA model developed by Nagel and Schreckenberg as a starting point, we extended the

model to include tra�c in street networks. The goal was to maintain the simplicity of the CA

model as far as possible by using a few building blocks based upon the original model. We have
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feature PAMINA I PAMINA II PAMINA III

individual speed limit no no yes

transfer rates yes no no

route-plans no random yes

tra�c signals no no yes

message passing library PVM PVM PVM/MPI

parallelization direct Toolbox 1.0 Toolbox 2.0

o�-line load balancing yes yes yes

o�-line feedback no no yes

online load balancing no yes prepared

Table 3.1: Overview over PAMINA versions

implemented three versions (see Table 3.1) of the micro-simulation PAMINA which we would like

to describe in this chapter.

The �rst version PAMINA I [102] already used the multi-lane extension of the Nagel-Schreckenberg

CA to simulate tra�c on links. Vehicles are generated using sources with time-dependent insertion

rates. At each of the tra�c nodes (e.g. junction or ramp) vehicles are transferred to their new

respective destination links according to time-dependent transfer rates. In this respect it is similar

to CASim. There is, however, no calibration of the transfer rates as in the tra�c simulation of

the city tra�c of Duisburg. Vehicles are removed from the network at sinks with time-dependent

absorption rates. The implementation used a distributed memory approach with PVM as the

message passing library.

The second version PAMINA II focused on the computational aspects of load-balancing. In contrast

to PAMINA I, which used a static load-balancing scheme, PAMINA II used online measurements

of execution time to balance the computational load on all CPUs of the parallel computer system.

It was also used as a feasibility proof for the simulation of the whole Autobahn network of Germany

in real-time [106]. PAMINA II will be discussed in detail in Chapter 6.

The third and current version PAMINA III shifted the focus to the actual application of the tra�c

simulation. The network model was extended to include simple signalized intersections. Also,

vehicles now follow individual routes on their trips through the network instead of obeying transfer-

rates or random routes. PAMINA III (or simply PAMINA in the following) will be described in

detail in this chapter. Its applications will be discussed in Chapters 4 and 5.

The main objective of PAMINA is to execute a route-set (a list of route-plans) in a street network.

Each route-plan is de�ned by a source, a destination, a list of intermediate net points, and a

departure time. After a vehicle has been instantiated

1

at the given departure time, it will be

inserted into the simulation network at the origin. It will then execute the route-plan until it

reaches its destination. Finally, it will be removed from the system after statistics about its actual

travel time have been collected.

1

In object-oriented programming languages the term instantiate is used for the dynamic creation of a memory

object (e.g. vehicle). These objects usually have a limited life-time before they are deleted or disposed.
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A simulation run is initiated by supplying a map de�ning the geometry of the street network and

the route-set. Vehicles will be instantiated according to their departure times until all routes have

been processed. The simulation will continue until a given percentage of all instantiated vehicles

have reached their destination. For the simulation runs of Chapter 4 the simulation time is set to

a �xed interval (here 7 hours).

3.3 Network elements

One of the �rst applications of the network simulation PAMINA was to simulate the whole Auto-

bahn network of Germany in real-time, which is to say that one simulation second takes as long as

one wall-clock second. The network was given as a graph with nodes and links which had to be

represented in the simulation. In the following sections we will describe this network representation.

The network representation used in PAMINA is a graph in which each intersection is represented

by a node

2

and each street segment between intersections corresponds to two edges

3

. Moreover,

there are nodes de�ned by the natural boundaries of a road network with node degree one, called

terminators, and additional nodes with degree two where vehicles can enter or exit the network,

called ramps

4

. This network is usually supplied in two sets of objects: (a) the set of nodes, each

of which has a unique number (id) and the geometric location of the object, given in rectangular

coordinates relative to an arbitrary, but �xed point, and (b) the set of edges, each of which has two

references (by id) to nodes and optional information such as name, number of lanes, or speed limit.

3.3.1 Street segments

The directed connection (edge or link) between two nodes is represented as a grid equivalent to the

model by Nagel/Schreckenberg and its two-lane extension. The characteristics length

5

, speed limit,

and number of lanes are used to adapt the CA model. The size of the grid is computed by using

the grid-site length of 7.5 [meter] as a unit.

It is important to note that the characteristics mentioned so far are constant for the whole segment.

Typical details like additional turning lanes in front of intersections may be modeled by inserting

additional nodes to split a given segment and assigning di�erent parameters to the various parts.

2

Also known as vertex.

3

A segment can correspond to one edge or two edges depending on whether the two directions are equivalent,

or not. PAMINA uses the latter, even if all characteristics of both directions are identical, since this symmetry is

broken during simulation, anyway.

4

The segments feeding the ramps are not part the network. Therefore they do not increase the degree of a ramp.

If the map were extended to include lower hierarchies, ramps would also have degrees larger than two.

5

The length of a street segment is either explicitly given or derived from the Euclidean distance of the two nodes.
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Lane changing

The lane changing rules were taken from Section 2.2. If a link has more than two lanes, we enforce

a left{to{right lane-changing priority. This prevents two vehicles from moving to same common

site in case both have to change lanes according to their lane changing rule set.

For PAMINA II, special rules apply in the vicinity of ramps: exiting vehicles are required to remain

on their exit lane. They are no longer permitted to change lanes.

Speed Limit

In contrast to the original CA model which assumed a maximum speed limit of approximately 120

km/h (freeway tra�c), the speed limit within a city is usually lower. In order to match individual

speed limits of the simulation area, for each segment we introduced a CA speed limit

v

sl

= bv

real

sl

=l

site

+ 0:5 + p

d

c

where v

sl

is the CA speed limit given in sites per time-step, v

real

sl

the real speed limit given in meters

per second, l

site

the CA site length given in meters, and p

d

the deceleration probability of the CA

rule set. Moreover, v

sl

is forced to be in [1 : : : v

max

]. Note that p

d

is used to compensate for its

reduction of the average free-ow velocity to v

max

� p

d

. Using the speed-limit as a reference for the

free speed is based upon the assumption that most drivers will go as fast as permitted. Depending

on regional driving habits, the free speeds may have to be adjusted to match actual measurements.

3.3.2 Basic network elements for freeway junctions

We designed eight basic network elements which serve as building blocks for junction templates.

Similar to the design of the tra�c CA, the basic elements are discrete in time and space. Their

rule-sets are of comparable complexity.

Source (SRC) A source is associated with a network node and the outgoing lanes of a street

segment. It carries a queue of vehicles that are to be inserted into the street segment. Every

time-step it scans the �rst site on each lane for vacancy. Each vacant site is then �lled by

those vehicles in the queue which have been waiting the longest. Compared to the \look

back" rule of the two-lane rule-set for lane changing, this is a rather simple behavior. A more

elaborate rule-set can be found in [78].

Sink (SNK) A sink is associated with a network node and the incoming lanes of a street segment.

Every time-step it scans the last (closest to the node) v

max

sites of each lane to detect vehicles

that carry a route-plan whose destination node is the same as its own network node. Whenever

such a vehicle is found, it is removed from the site and deleted after some information about

the route-plan execution has been collected.
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Figure 3.1: Marking, deceleration, and absorption

Transfer Segment (TS) Transfer segments are multi-lane CA grids of length l

transfer

used to let

vehicles travel from absorption ranges to insertion ranges. As for lane-changing they function

as though they were normal grids. The beginning and the end of a transfer segment is either

de�ned by a connector or a block preventing vehicles from advancing any further.

Marking Range (MR) The marking range is used to mark vehicles for exit. It is associated with

a source street segment and a destination street segment. Every time-step it scans a range

of sites of length v

max

on the source segment for vehicles required to exit onto its destination

segment. Whenever such a vehicle is found, it will be marked with a ag which inuences

CA lane-changing behavior.

Absorption Range (AR) An absorption range is associated with a source street segment, a

destination street segment and a transfer segment. At every time-step it scans each lane (see

Figure 3.1) over a range of length l

merge

on the source segment for vehicles that are marked for

exit to its destination segment. Whenever such a vehicle is found and the corresponding site

on the transfer segment is vacant, it will be moved from the source segment to the transfer

lane preserving its current velocity. At the same time the ag which caused the transfer will

be reset.

Deceleration Range (DR) A deceleration range is associated with a street segment. At every

time-step it scans a certain set of lanes (not necessarily all lanes) over a range of length v

max

(see Figure 3.1) for vehicles marked for exit and currently located in a lane leading them to

a wrong destination. Whenever such a vehicle is found, its maximum velocity is decreased as

follows: Let v

i

denote its current velocity, v

i;max

its maximum velocity, and p

i

the position of

the vehicle, where p

i

= 0 (p

i

= v

max

� 1) represents the �rst (last) site of the range of the

range, respectively. Then

v

i;new

= min(v

i

; v

i;max

; v

max

� p

i

� 1)

v

i;max;new

= min(v

i;max

; v

max

� p

i

� 1)

represent the new current velocity and new maximum velocity, respectively. The vehicle will

never be able to leave the range in forward direction and will eventually stall at the end of
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substructure graph

Figure 3.2: Substructure of an junction of degree 4 | The left-

hand side depicts the substructure of an intersection of degree four. All deceleration,

transfer, and acceleration lanes are explicitly coded. The intersection in question is AK

J

�

uchen of Autobahn A44 and A46. The right-hand side shows the corresponding graph

representation which PAMINA uses as input format.

the range. It can only proceed by changing lanes and thus restoring its maximum velocity to

its old value.

Insertion Range (ER) The insertion range is the counterpart to the absorption range. It is

associated with a transfer segment and a destination street segment. At every time-step it

scans each lane at the end of the transfer segment over a range of length l

merge

for vehicles.

Whenever a vehicle is found and the corresponding site on the rightmost lane of the destination

segment is vacant the vehicle is transferred from the transfer segment to the destination

segment.

Connector (CN) The connector is associated with a source street segment and a destination

street segment. At every time-step it copies boundary information from the outgoing lanes

of the destination segment to the incoming lanes of the source segment and vice versa. The

associated CA grids can thus be regarded as continuous so that no special rules are needed

to guarantee consistent update between segments.

3.3.3 Freeway junctions

The representation of Autobahn junctions or freeway junctions as one of composite structures is

an over-simpli�cation. Figure 3.2 depicts an intersection of degree four with its given substructure

and the corresponding simpli�ed graph structure.

The reason why the early versions of PAMINA were still based upon such a simple input data format

is simply due to its general availability. More elaborate data formats

6

| especially for the German

6

e.g. the EGT data base which contains all required characteristics except for the number of lanes.
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street network | have only started to emerge. It will be years before a really comprehensive data

base will be available. Meanwhile, the concept was to provide a set of substructures which can be

used as templates to model the real-world intersections.

Composite network elements (substructures)

The main characteristics of a junction like throughput and capacity will be captured by de�ning

adequate template substructures and choosing available parameters accordingly. These are: the

number of lanes n

transfer

of the transfer segment, the maximum velocity and related CA parameters

of the transfer segments, the lengths and positions of the merge, absorption, and insertion ranges,

as well as the relative position of the ranges with respect to each other. Throughput measurements

of real intersections can be used to validate the templates and compare them to other models that

have a higher �delity of their intersection representation [42, 66, 89].

Each composite network element is composed from several basic network elements described above.

In addition to their individual functionality they share the ability to forward vehicles with respect

to a canonical through-direction. This is done by using connectors to pass boundary information of

an incoming segment to the corresponding outgoing segment and vice versa. Which lanes are to be

regarded as through-lanes will be described below. Table 3.2 shows an overview about how many

basic elements form one composite element.

Composite Element TS SRC SNK MR DR AR ER CN

terminator 0 1 1 0 0 0 0 1

ramp 4 2 2 2 2 2 2 2

intersection degree 3 4 0 0 4 4 2 2 2

intersection degree 4 8 0 0 8 8 8 8 4

Table 3.2: Composite network elements

Terminator A terminator consists of one source and one sink. They are necessary to de�ne

boundary conditions for the tra�c volume generated by routes.

Ramp The ramp serves as an origin and destination for route-plan execution. Since vehicles can

leave in two distinct directions there are two sources (and, of course, two sinks) per ramp.

The through-direction is trivially de�ned.

Junction of degree 3 The substructure of a junction of degree 3 (see Figure 3.3) is designed to

be asymmetric: two of the three incident street segments are regarded as through-direction,

one is subordinate. Since information about the actual structure is usually not available, the

geometric graph information is used to determine the through-direction as follows: for each

pair of incident segments the enclosing angle is calculated. Of those, the pair with the angle

having the smallest deviation from � is regarded as through-direction, the remaining segment

as subordinate.



42 CHAPTER 3. EXECUTING PRE-COMPUTED ROUTES

AR

ER

CN connector

emission range

absorption range

DR

MR

deceleration range

marking range

CN

ER

MR

CN

A

ER

su
b

o
rd

in
at

e 
d

ir
ec

ti
o

n

through direction

B

BA

CN

CNMR

MRAR
DR

DR
AR

DR

Figure 3.3: Junction of degree 3

Due to the discrete nature of the CA there is another characteristic: vehicles coming in on

the subordinate segment have to change lanes to reach either the left bn

lanes

=2c lanes for a

left turns or the right dn

lanes

=2e lanes for a right turn. Suppose two vehicles A and B end

up on the very last sites of the incoming segment with A bound to make a right turn, but

located on one of the left lanes, and B bound to make a left turn, but located on one the

right lanes. In such a case the vehicles will block each other from changing lanes, resulting in

a dead-lock which is not automatically resolved through the CA rule set. Therefore at every

time-step these locations are scanned for pairs of vehicles which ful�ll the condition above.

When such a pair is found the vehicles will simply be switched.

Junction of degree 4 The substructure of an intersection is regarded as completely symmetric |

resembling a clover leaf. Opposing incident street segments are canonical through-directions.

Figure 3.4 shows the structure of this type of intersection. Note that due to symmetry only

2 out of 8 transfer segments need to be displayed.

3.3.4 Simple city intersections

In PAMINA III we added another simple intersection type. For city tra�c there is usually no

need to provide for transfer lanes since the extent of city intersections can be assumed to be zero

7

.

Therefore, the structure can be considerably simpli�ed. Figure 3.5 depicts the geometry of a city

intersection. All incoming lanes to each segment are equivalent. At the very end of each incoming

lane v

max

sites are scanned for vehicles before the usual rules of motion are applied. During each

time-step, at most one vehicle per incoming lane of the source segment can be moved to one of

7

In TRANSIMS it takes a vehicle at about one time-step to transverse an intersection.
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absorption

insertion

block

Figure 3.5: Geometry of a city intersection | In case of the left turn depicted above, the vehicle

on the left lane has no corresponding lane on its destination link. It will be inserted into the leftmost lane.
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the insertion sites of the destination segment. If possible, the same lane is used on the destination

segment. If that is not feasible and if the destination segment has fewer outgoing lanes than the

incoming segment has incoming lanes, the vehicle is inserted into the leftmost lane. If that site is

occupied, the next neighboring site o� to the right is checked until a vacant site is found or the

right-most lane is reached. Note that the scanning of the incoming lanes is always done beginning

at the site nearest to the intersection. Thus, the order of the vehicles with respect to each other is

not changed. In order to ensure unbiased processing of all incoming lanes, the scanning is done in

a round-robin fashion with respect to consecutive time-steps.

For a vehicle approaching the intersection there are two alternatives: either it is absorbed from the

scanning area and inserted into the destination segment or it proceeds according to its CA rules

of motion. Due to blocking at the end of the lane (or earlier due to other preceding travelers)

it will eventually stop. This behavior is important to model the spill-backs in real world tra�c.

The queues are resolved as one would expect: As soon as the situation on the destination lane(s)

improves, vehicles are removed one by one starting at the site nearest to the block. Note that a

vehicle may be blocked by other vehicles (having a di�erent destination) although its destination

segment is vacant. This e�ect may cause grid-locks which will be discussed in Section 3.4.2.

Approach and turning behavior

In contrast to other tra�c simulations with resolution at city-street level, we do not model a special

behavior for vehicles while approaching or transversing intersections. In our implementation all

incoming lanes are equivalent. This was done for two reasons. First, modeling detailed approach

and turning behavior requires extensive geometric information which is often not available or not

consistent. Second, the current rules of motion show a quickly decreasing lane-changing probability

as soon as the density exceeds a certain threshold. This is mainly due to a strict 'look-back'

rule (see 2.2.2) which checks for following tra�c on the neighboring lane. In contrast to freeway

conditions, where this rule maintains the desired tra�c jam waves, here, it would prevent proper

lane-changing. This again would result in vehicles queuing up, since they could not change to their

respective turning lanes [89].

Tra�c lights

Tra�c lights are modeled by activating the scanning mechanism for the duration of the green phase

T

g

and deactivating it for the length of the non-green-phase T

r

(which includes both the red phase

and transition phases). Since there is only one phase per incoming segment, any direction-speci�c

phasing information is averaged over all directions weighted by the number of active lanes into the

respective direction. Let i be the incoming segment, j the outgoing segment, T

g

(i; j) the length of

the green phase from i to j, and l(i; j) the number of lanes going from i to j. The overall green

phase will be computed as

T

g

(i) =

P

j

l(i; j)T

g

(i; j)

P

j

l

g

(i; j)

:
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The overall red phase T

r

(i) is computed similarly using all T

r

(i; j). Note that due to this averaging,

the complete phase cycles T

rg

(i) = T

g

(i)+T

r

(i) (green phase + red phase) of the incoming segments

may di�er from each other, resulting in a continuous phase shift. This is di�erent from real world

tra�c light installations where the starting time is usually de�ned by taking a multiple of T

rg

(i)

and adding a relative o�set.

Interferences

Two types of interference can occur at an intersection: (a) vehicles that have to obey right of way

must wait for gaps in the crossing or oncoming tra�c stream, and (b) vehicles that have right of

way are obstructed by others blocking the intersection. In the simplest version of our intersection

neither of these interferences are handled. However, it is simple to force a reduced throughput

through the intersection by examining the overall occupancy of the v

max

last sites of all outgoing

segments and introducing an additional transfer probability. This probability would have a value

of one if all sites in the examined area are vacant, a value smaller than one if all are occupied, with

a functional (possibly linear) transition between the two extremes.

Sources and sinks

In contrast to a freeway junction, a city intersection may be a vehicle source and/or a vehicle sink.

This is required for route-plans which start or terminate at a node. In this case the absorption

range at the end of the incoming segments (see Figure 3.5) will be used to absorb vehicles that

have reached their �nal destination. The insertion sites will be used to insert new vehicles.

3.3.5 Parking accessories

Parking accessories are equivalent to sources and sinks, only that they are located right on the

link. For the simulation of city tra�c they serve as insertion (deletion) points for all trips starting

(ending) in driveways or parking lots on that link.

Vehicles can be inserted at an accessory if more than 2 consecutive sites are vacant. This is done

to guarantee that during heavy congestion not all gaps in the link are �lled by vehicles from the

accessory source queue.

3.3.6 Route-sets

The �rst attempt to include route-sets into a medium scale tra�c simulation was done in one of

the early versions of TRANSIMS [5]: the interstate tra�c of the city of Albuquerque was simulated

on a single workstation to show the general feasibility of this approach. Nagel [78, 85, 88] used

a parallel computer with two CPUs to run a parallel net simulation based upon the single-lane

CA with individual route-plans. He examined iterative route-selection behavior for a group of
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drivers traveling through the network. The NRW-FVU, TRANSIMS, and PARAMICS groups are

currently designing or already using large-scale tra�c simulations that include route execution.

INTEGRATION [63] and DYNASMART [46] have also been used with individual route-plans,

albeit at a smaller scale.

For PAMINA, route-sets represent the third major input for the simulation beside nodes and edges.

Each route-plan contains information about the node id of the origin, the scheduled departure time-

step from the origin, the estimated travel time in simulation time-steps, a list of node id including

the destination as its last entry, and optional vehicle data.

PAMINA expects the routes to be sorted according to their departure time-step. Thus the evalua-

tion of the route-plan is reduced to the following scheme: at every time-step routes are sequentially

read until a departure time-step is found that is larger or equal the current time step. For each

route a vehicle is created and loaded with that route. The vehicle is appended to the insertion

queue of the source associated with the given origin id. If there is more than one source per id (e.g.

ramps or accessories) also the second node id of the route-plan is scanned to determine the outgoing

segment and thus the speci�c source. Note that the scheduled time of insertion may di�er from

the actual time of insertion, since the source can only add vehicles to the grid if there are vacant

sites. During intervals of high insertion rates there will be a certain number of vehicles waiting (or

'pending') in the source queues.

In addition to the tra�c volume generated by routes, PAMINA II provides a mechanism to generate

background tra�c (see A.2) of a given density. In this case vehicles will be homogeneously instan-

tiated across the network before the actual simulation is started resulting in the selected density.

In contrast to their routed counterparts these vehicles do not carry route-plans at all. Instead, they

change directions at intersections according to a given turning probability. In case a non-routed

vehicle is about to leave the network, it will be reected with its current lane and velocity heading

in the opposite direction.

3.4 Simulating city tra�c

As a �rst test [104] for PAMINA with realistic route-plans, we used a preliminary route-set gen-

erated for TRANSIMS case-study. We used two maps (see Figure 3.6): the complete Dallas/Fort

Worth Area and a small excerpt of the latter called study-area. The study-area map comprises all

streets except small ones in residential areas and similar areas. The large map further contains all

minor and major arterials for Dallas and all major arterials for Forth Worth.

The plan-sets which were available at that time contained only trip departure times between 7 am

and 10 am of which we selected those between 7 am and 8 am as the period of interest. Therefore,

we started the simulation at 7 am and let it run at least until 8 am. After that, the simulation either

terminated when (a) 99% of all route-plans had been executed, or (b) a grid-lock was detected.

In this context we assume the system to be grid-locked if the number of vehicles in the system is

constant for more than 600 time-steps. For the CA model we used the deceleration probability of

p

d

= 0:3 in all simulations.
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Study Area

Grid-Lock View

Dallas / Fort Worth

Figure 3.6: Map of Dallas / Fort Worth | The di�erent shades of gray in the Dallas / Fort

Worth map correspond to the mapping to di�erent processors of the parallel computer topology. Note that

the resolution decreases with growing distance from the study-area. For the simulations in this chapter the

study-area itself contains only major and minor arterials. The study-area can also be seen in Figures 4.21

(including all local streets) and 3.7 (with V/C ratios). The small rectangle marked as Grid-Lock View can

be seen in Figure 3.13.
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For each simulation run all plans can be regarded as static. For the time being, we do not perform

any online re-routing. A plan-set is generated from an activity set consisting of a source plus a

departure time on the one hand and destination on the other hand. The plan-set used for the study

presented here (also referred to as plan-set 11) is a very preliminary plan-set which was generated

in the course of the Dallas/Fort Worth case-study of TRANSIMS. Work on plan-sets in the context

of the same case-study can be found in [64, 82] and in Chapter 4.

The plan-sets in TRANSIMS are sequences of links plus estimates of when these links will be

reached. From this, one can calculate when every driver expects to be on a certain link. In conse-

quence, one can calculate the complete time-dependent demand structure, which would correspond

to the tra�c which would happen if everybody could act according to her expectations.

This demand structure is best displayed in terms of the ratio of ow demand to capacity, also called

V/C ratio.

8

If the V/C ratio is exactly one, the number of vehicles which are planning to use a

certain link is equal to the maximum number of vehicles the link can let through. If the V/C ratio

is larger than one, then the number of vehicles in excess of the capacity will not be able to get

through and will be queued up at the entrance of the link. This means that these vehicles will not

be at other links downstream when they expected, so that the demand structure downstream of a

congested link (i.e. V/C > 1) becomes wrong. From this argument it becomes immediately clear

that one has to run the micro-simulation to obtain dynamically correct tra�c patterns.

Figure 3.7 shows a graphical display of the demand structure of a plan-set which is similar to the

one used for the simulation runs.

All plan-sets are computed for the whole Dallas/Forth-Worth area which means that all routes have

to be restricted to the study-area if only that portion of the map is simulated. The truncation of

the plans is done in a straight-forward way: any route that contains at least one segment within the

study-area will be part of the restricted plan set. Its departure will be delayed by the amount of

time that the vehicle would spend outside the study-area before it reaches the �rst segment within

the simulation area. For all edges transversed up to entry, we use the cruising velocities assumed

by the planner (also see 4.3.2).

After the start of the simulation, route-plans are executed as follows: (a) At the time-step given

by the departure-time, a vehicle is created at the departure node (source) of the route. (b) The

vehicle is inserted into a queue associated with the source. (c) Each time-step the queue is scanned

for pending vehicles. If possible, the vehicle is removed from the queue and inserted into the �rst

segment, where it starts executing its route-plan. (d) As soon as it reaches the destination, the

vehicle is removed from the segment. The travel time is recorded for statistical evaluation.

Note that all vehicles try to execute their route-plans independent of the actual tra�c conditions

that they encounter along their way. In heavily congested areas, vehicles often spill back across

intersections because they cannot enter their next destination segments. This current approach

can result in complete grid-locks of the simulation area, which cannot be resolved with the current

rule-set. This artifact will be discussed next.

During the simulation we keep track of: the number of vehicles inserted so far, the number of

8

V stands for volume, C for capacity. One has to keep in mind that V refers to volume demand.
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Figure 3.7: V/C-ratios in the study-area| White links mean that demand is lower than capacity (V=C < 1);

for gray links demand is between capacity and two times capacity (1 � V=C < 2); for black links demand is larger than

two times capacity (2 � V=C). The time labels (17:00-18:00) refer to an equivalent afternoon rush hour. This �gure was

generated using the FlashPlan visualization utility of the TRANSIMS application suite.

vehicles currently in the network, and the number of vehicles that have reached their destination.

Upon arrival of each vehicle we store the estimated travel time (computed by the router beforehand)

and the actual travel time. These times can be compared to check the prediction quality of the

router.

Except for the curves depicting the number of vehicles in the study-area (Figure 3.11), we con-

sidered only vehicles that arrived before time-step 1800. Also, all curves have been aggregated

over 10 simulation-runs (using di�erent random seeds) and normalized according to the respective

number of vehicles that have reached their destinations before time-step 1800. Moreover, the area

underneath each curve has been normalized to one.
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3.4.1 Levels of �delity

The principal goal of a CA tra�c simulation must be to keep the rule-set as small as possible. This

has two advantages: First, by keeping the number of parameters small, the probability of artifacts

is reduced and the model can be validated more easily. Second, simple rule-sets usually result in

e�cient coding which is essential for fast delivery of results | considering the before-mentioned

need for statistical averaging.

In this section, we examined the e�ects of model �delity by simulating the same plan-set with

di�erent characteristics of street segments (speed limit, see 3.3.1) and intersections (tra�c-lights,

see 3.3.4). We ran simulations for the combinations listed in Table 3.3. For the low-�delity (lf)

model both tra�c lights and speed-limits were deactivated. In the speed-limit (sl) model only tra�c

lights were activated, in the tra�c-lights (tl) model only tra�c-lights. The high-�delity (hf) model

contained both features.

short name lf sl tl hf rl

long name low fidelity speed limits tra�c lights high fidelity reduced lights

speed limit no yes no yes yes

tra�c lights no no yes yes q

r

Table 3.3: Parameters of simple city simulation | Parameters (bottom rows) de�ning the �delity

(right columns) of the simulation: In case of an active speed limit the maximum velocity v

max

is reduced from its

original value of 5 to a segment-speci�c value. In case of active tra�c lights, the transfer at intersections is decreased

by introducing periodic red phases during which some of the incoming segments are blocked. Reduced non-green phases

(q

r

) are discussed in Section 3.4.3.

Delay of arrival

Since each vehicle's actual travel time t

actual

is recorded upon arrival, we compute the distribution

of relative delay d

d =

t

trav

act

� t

trav

sched

t

trav

sched

with respect to the scheduled trip time t

trav

sched

forecast by the router. Note that negative values

denote early arrivals. Figure 3.8 shows the results for plan-set 11 in all �delities. It is obvious

that in mode lf (due to the missing speed limit) route-plans are executed much too fast. There are

hardly any delays at all. In modes sl and tl the peak is already shifted towards zero delays but still

biased. Mode hf generates a distribution which peaks almost exactly at zero delay. The average,

however, is shifted towards positive delays. This can be veri�ed in Figure 3.9, which displays the

running average (over the latest 1000 vehicles) of the relative delay. In the uncongested regime the

travel times of the micro-simulation are shorter in general than what the planner had expected.

In highly congested situations, though, travel times in the micro-simulation are longer than the

planner predicted.
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Figure 3.8: Distribution of relative delays for plan-set 11 | The low �delity model lf shows

a characteristics peak at negative relative delays since vehicles are not delayed by either speed-limit or tra�c-lights.

Higher �delities have their peaks shifted to positive delays.
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Figure 3.9: Running average of relative delays for plan-set 11 | The curve for �delity sl is

closest to zero relative delay throughout the simulation. Fidelities with activated tra�c lights have a rising tendency.

This is caused by growing congestion inside the study-area: The number of vehicles never reaches a plateau. The

low �delity simulation executes routes to quickly resulting in large negative delays.
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Figure 3.10: Distribution of trip duration | The distribution of planned trip duration as projected

by the planner is best matched by �delity sl.

We have to point out that it cannot be the goal of the dynamic micro-simulation to reproduce the

static results forecast by the planner. These comparisons only serve as a consistency-check. It is

to be expected that results of the micro-simulation will di�er considerably, e.g. in places where the

implicit aggregation of the planner smoothes over sudden peaks in tra�c load.

Trip duration

Figure 3.10 depicts the distribution of trip durations for all �delities. As expected, mode lf has its

peak shifted far left towards small trip durations. Mode tl has a signi�cant peak at approximately

50 [sec], where it reaches the same value as lf. This is due to the fact that the probability of

encountering a tra�c light is a very small for short trips, rendering modes lf and tl equivalent in

that regime. Modes tl and hf have a very slow descent towards large trip durations due to grid-locks.

The curve of trip duration as projected by the planner is best matched by mode sl.

3.4.2 Reproducibility and grid-locks

Since the CA model contains a stochastic element, we receive a unique evolution of the simulation

for each seed of the random number generator. In a sub-critical system the network is able to

transport all vehicles (albeit with delay) so that all runs will look similar on a macroscopic level.

In a system with a network throughput incapable of handling the loading, the system will most

likely grid-lock (see below). Between the two extremes we �nd a regime in which the speci�c

con�guration may either block or not block. Figure 3.11 depicts the number of vehicles which are
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Figure 3.11: Vehicles in study-area for plan-set 11 | While the vehicle count reaches an

equilibrium for �delities lf and sl, the other two �delities grid-lock.

in the study-area at a given time-step. Fidelities lf and sl belong to the sub-critical regime. Both

curves reach a plateau (at 4500 vehicles after time-step 500 for lf and at 10,000 vehicles after time

2500 for sl) after an initial loading phase representing an equilibrium between the insertion and

deletion rates of vehicles. After the loading phase all remaining vehicles are discharged within 400

time-steps for lf and within 900 time-steps for sl.

Modes tl and hf belong to the super-critical regime. They never reach an equilibrium between

insertion and deletion during the loading phase; and the plateau after the loading of the network

is due to grid-lock.

See [7] for a similar (albeit much smaller scale) investigation on the relation between network

loading and network throughput.

Grid-locks

In this simulation a grid-lock situation can be determined by a horizontal line after time-step 3600

(e.g. the end of vehicle insertion). This is caused by closed loops in the tra�c network in which

all sites are occupied. Similar grid lock situations were reported in [29, 82]. Figure 3.12 depicts

a simpli�ed intersection. In the left half, tra�c is already dense, though not grid-locked. Due

to high demand and the red-phases at the intersection, the segments of the loop are no longer

cleared. In the right half the whole loop is blocked: the �rst vehicle in each lane is forced to make

a right turn into another lane which is also blocked. This phenomenon (in its strict form) cannot

be seen in real-world tra�c, because drivers move out of the lanes and pass on the on-coming lane

or they abandon their current route and choose a detour. Figure 3.13 shows a screen-shot of a
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before dead-lock after dead-lock

Figure 3.12: Geometry of a grid-lock| Left: Just before a grid-lock situation. Right: The grid-lock

was caused by vehicles which are required to make right turns. The �rst vehicle of each grid is waiting for the other

vehicle to leave the side. Since this dependency is circular, it cannot be resolved anymore.

Figure 3.13: Grid-lock in study-area (plan 11, �delity hf)| The screen shot shows a grid-lock

con�guration found while executing plan-set 11 at high �delity. The location of this excerpt within the study-area

can be seen in Figure 3.6.
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Figure 3.14: Distribution of relative delay of plan-set 11 (di�erent q
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) | The distri-

bution of relative delays exhibits a smooth transition between �delity sl (corresponding to q

r

= 0) and �delity hf

(corresponding to q
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= 1:0).

simulation run with plan-set 11 in mode hf. Vehicles are represented by dark dots, lane boundaries

by grey lines. Right at the center, there is a small grid-locked loop blocking tra�c from all incoming

directions.

3.4.3 Reduced non-green phase length

We have encountered cases of sub-critical and super-critical loading of the network. Although the

respective models are de�ned by di�erent types of rule-sets, they can be regarded as two speci�c

cases of a more general rule-set (called rl) in which in the e�ective red-phase T

r;eff

is computed

by multiplying the original phase-length T

r

by a certain factor q

r

2 [0 : : : 1]. Consequently, q

r

= 0

represents mode sl while q

r

= 1 represents mode hf.

We conducted several runs for di�erent values of q

r

between 0 and 1. Both Figures 3.14 and 3.15

show a smooth transition between modes sl and hf (for 0:6 and 0:65 blocking and non-blocking

representatives were chosen) as far as delay and trip duration are concerned. Values below 0:6

show a secure sub-critical (no grid-locks), and values above 0:65 a secure super-critical behavior.

For 0:6 and 0:65 the system has a certain chance of reaching a grid-lock (1 out of 10 runs for

q

r

= 0:6 and 5 out of 10 for q

r

= 0:65), which can better be seen in Figure 3.16. Figure 3.17 depicts

the number of vehicles after the loading phase and at the end of simulation as a function of q

r

.

A similar e�ect was reported for simple 2-dimensional grid models [22, 39, 72], except that in

these studies the overall density was changed instead of the e�ciency of the network components.

Intuitively, the grid-lock e�ect seems to be the same. Further investigations will be necessary to
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Figure 3.16: Vehicles in study-area (q

r

= 0:55; 0:6; 0:65; 0:7) | For q

r

= 0:6 and

q

r

= 0:65 the simulation generates both grid-locking and non-grid-locking runs. Note that the only di�erence

between the runs is the seed of the random generator.
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understand in how far simple models on a 2-dimensional grid can indeed o�er insight for real-world

city tra�c, which is happening in 2-dimensional space but is composed of tra�c on 1-dimensional

links.



Chapter 4

Iterative Route Adaptation

As we discussed in the previous chapter, tra�c simulation has bene�tted substantially from the

development of new simulation techniques and the increasing computational power of today's com-

puters. Handling the functionality of the micro-simulation is not an easy task, but it can be solved

by thorough research, validation and implementation. The most imminent problem of tra�c simu-

lation, however, has not been solved yet, namely providing the input data to drive the simulation.

Speci�cally, we need to acquire a better understanding of \Where and when do people go?" In

reality, vehicular tra�c is generated by millions of individuals who use their past experience and

up-to-date information to chose one of many possible paths through the tra�c network. If we knew

the origin, the departure time and the destination for each and every individual, we could use this

information to create a what is referred to as an origin-destination matrix (abbreviated as O-D

matrix). Unfortunately, this data is generally not available!

In this chapter, we will discuss how to generate reasonable input data for the micro-simulation.

First we outline, how route-sets have been produced traditionally. In Section 4.2 we describe an

iterative adaptation method to produce a route-set using simulation feedback. We continue with

Section 4.3, where we use PAMINA to conduct comprehensive iterations runs. As a conclusion, in

Section 4.4 we compare PAMINA to two other simulations. Each of the simulations uses route-sets

that were obtained from the same type of iterative adaptation process.

4.1 Introduction

As mentioned above, the central prerequisite of tra�c simulation is to know how many drivers

depart, in a given time-interval, from which source to which destination. One way to retrieve

partial information about the origin-destination matrix is to conduct a sampled survey of drivers.

The disadvantages are obvious: (a) the fraction of drivers will be small, (b) the data may be

heterogeneously distributed over the simulation area, (c) many of the drivers will not be able to

give route descriptions, (d) some of the drivers will give wrong data for whatever reason. It is

obvious that extrapolating any route or origin destination information based upon survey results

58
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is | to say the least | di�cult.

4.1.1 Drawback of tra�c count data

Another possibility to drive the micro-simulation is to discard the individuality of vehicles and

regard only streams of vehicles (refer to Figure 4.1). This simpli�es the problem of input data to one

of collecting vehicle count information which could be obtained from counting devices distributed

across the simulation area. Provided that su�cient information (also see the discussion about

retrieval of count information in Section 5.1) is available there are two possibilities:

� The counting data is used to generate an origin-destination matrix by solving a non-linear

program. The problem is that for a given intersection with n incoming links there are n(n�1)

turning dependencies, but only 4n link counts. This relationship continues for larger networks

leading to aboutO(N

2

) origin destination relations forN intersections with onlyO(N) counts.

The result is a highly under-determined system of equations which is di�cult to solve. Using

time-dependent correlations between inows and outows yields some additional information

but also requires a �ne time-grid which worsens statistics for each time-bin. Also, inow

detectors and outow detectors must be su�ciently close to each other. Assumptions about

the maximum entropy of the inow-outow relationships (e.g. [53]) do not yield conclusive

results either.

Note that by creating an origin-destination matrix from the anonymous count information

can be \personalized" again. This is currently being done at the FVU-NRW project (see [90]).

� The counting data is only used to generate turn count information for each individual inter-

section. Absolute counts are converted into relative turning probabilities for each incoming

direction with respect to each outgoing direction. Additionally, information about all inows

and outows at vehicle sources and sinks is included. It is possible to drive a simulation

using only this type of data as Esser [32] has shown for the city tra�c of Duisburg. Nagel [78]

notes that turning probabilities are especially bad downstream from a stochastically occurring

congested area: vehicles that have been delayed in a jam will not arrive during their correct

turning probability anymore, but rather during that of a later time-bin.

Another problem arises if new streets are added to the underlying tra�c network. Since

there are no tra�c counts available for the new street, there will not be any ow on the

corresponding link of the micro-simulation either. This clearly shows the uselessness of tra�c

counts for the comparison of scenarios with varying tra�c infrastructure.

One advantage of the anonymous approach is that vehicles can be added and removed dy-

namically to match tra�c counts provided by some online source. In [30] tra�c states are

dynamically reproduced by using either the density or the average velocity as a reference.
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Figure 4.1: Data ow in micro-simulation application suites | In this diagram rectangles

with round corners denote applications, the other rectangles denote data. Arrows denote the ow of data between

the modules. On the right hand side the TRANSIMS micro-simulation suite is sketched. Note that there are at least

two levels of feedback: between the micro-simulation and the route-planner on the one hand (inner feedback) and

the micro-simulation and the activity generator on the other hand. This chapter will focus on the inner feedback

loop which is shown in a more detailed form in Figure 4.2.
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4.1.2 Using origin-destination matrices

Instead of using origin-destination matrices derived from unreliable and incomplete tra�c ow

counts, another approach was chosen for TRANSIMS [120]. Based on census data

1

, arti�cial

households will be created to match the statistical properties of the original census [8]. Each of

these households will have a family with members requiring trips (such as home-to-work or work-

to-shopping) to di�erent places in the network. In this approach, a combination of trip origin, trip

destination, and trip departure time is called an activity. The set of all activities for a given time

period and area is called an activity list. This list can be regarded as a detailed origin-destination

matrix that has not been aggregated into time-bins. Note that, for the results presented here, all

route-sets relating to TRANSIMS are still based upon origin-destination data, and not on activity

lists.

Initial results from the TRANSIMS case-study [82] reveal that not only the route-sets, but also

the activity lists, will be inuenced by the results of the micro-simulation. This feedback, however,

takes place on a di�erent time-scale. Instead of changing route choice on a day-to-day basis, changes

to the activity lists rather reect changes in when and in which order trips are planned. Drivers

facing the same congestion every day will eventually choose a di�erent departure time, combine

several trips into one, or change this trip to another day of the week.

4.1.3 Equilibrium assignment

In the following section we will outline how an activity list (or origin-destinationmatrix respectively)

can be converted into a route-set that serves as input for the micro-simulation. We call this process

assignment or routing and the executing program the router. There are two main prerequisites for

this approach:

� There has to be some relationship between the travel-time on a link and the currently assigned

tra�c volume with respect to its capacity which is the maximum number of vehicles that can

traverse the link in a given time unit. Commonly used functions exhibit a steep increase in

travel-time as volume approaches capacity.

� We require a cost function judging the quality of a chosen route. In most cases this will be

the trip-time. Another option is to convert the trip-time into some monetary unit and then

add other expenses, such as vehicle maintenance fees on a per-mile basis and tolls. The latter

is especially important if the impact of road-pricing is to be investigated [84]. When we speak

of a shortest path, we actually mean the one with the lowest associated costs.

A simple algorithm (called all-or-nothing, see [115] p.111f) works like this: (a) choose one origin-

destination volume between S and D, (b) compute the shortest path between S and D and add the

volume to all links that are part of the shortest path, (d) update the costs of all links involved, (e)

repeat until all O-D volumes have been assigned. Obviously, this approach has major drawbacks:

1

This approach may cause di�culties in some European countries where census data is not available for research

purposes, even in the strongly simpli�ed form used for TRANSIMS.
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� The symmetry between O-D pairs is broken because they are sequentially processed by the

algorithm. Whoever is �rst to be handled has a greater probability of being assigned a shorter

path.

� O-D relationships of large volume cannot be split up resulting in unnecessarily high costs for

volumes which could otherwise be distributed over several alternative routes.

� After the algorithm has terminated, there may be links that have a volume assigned to them

which exceeds capacity.

The capacity constraint algorithm (see [115] p.112f) is similar to the all-or-nothing algorithm.

Instead of being run once, the procedure is iterated several times using the travel-times of the

previous run to obtain an estimate for the current assignment.

A simple improvement (called incremental assignment, see [115] p.115f) is to assign only a fraction

1=n of a given O-D volume and run the loop n times. By increasing n, the level of asymmetry can

be suppressed to any given threshold. Also, alternative routes will be used. The third problem,

however, may not go away. Transferred to the real tra�c network a volume above capacity for

a given link results in a tra�c volume at capacity for the link and increasing spill-back into the

feeding links. The spill-back will increase the travel-time for the feeding links rendering the initial

assumption about their assigned volumes invalid.

4.1.4 Quasi-dynamic assignment

Although the previous section has shown that the static equilibrium assignment has clear disad-

vantages, traditionally, its use was still justi�ed. Origin-destination matrices were averaged over

large periods of time (e.g. a whole day or a whole week). Therefore, the tra�c volumes seldom

exceed capacities since rush hours are smeared out over the whole day. Also, traditional dynamic

approaches are known to be computationally costly and generally not feasible for realistic problem

sizes.

A major improvement for tra�c assignment can be achieved by using a time-dependent origin-

destination matrix and by providing better feedback for links above capacity. The term quasi-

dynamic was chosen for this type of assignment because most models still lack the travel-time

feedback from a simulation.

The model SATURN [128] reduces O-D volumes going through crowded links by restricting the

volumes to maximum capacity. The remaining \suppressed" volume is saved to a �le for inspection

by the user. The simulation DNA (= Dynamic Network Assignment, see [122]) allows the suppressed

volumes to be automatically fed back to the next planning iteration. In the next iteration partial

O-D streams will start at the intersections at which the capacities were exceeded.

DYNEMO (= Dynamic Net Model, see [112]) was one of the �rst tra�c models to use the results of

a simulation as feedback for link travel-times. In �xed time intervals the routes of all vehicles in the

system are updated according to the current tra�c state. DYNEMO is not truly dynamic, however,

since the O-D matrix itself has to be time-independent. Only the route-selection is time-dependent.
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is simply reused. Before the route-set is fed into the simulation it is clipped to the boundaries of the study-area.

The model DRUM (= Dynamische Routensuche und Umlegung, see [114]) uses an iterative ap-

proach. Starting with a given set of time-dependent link travel-times it does a time-dependent

assignment of routes. A stochastic variation of the link travel-times permits the generation of al-

ternative routes for origin destination pairs. The time-dependent demand for each link is converted

into a new link travel-time for the next iteration of the algorithm. DRUM does not consider spill

backs caused by V/C-ratios larger than one. Therefore, it is questionable if the iteration process

will yield satisfactory results.

4.2 Truly dynamic assignment with simulation feedback

Nagel and Barrett used iterative re-planning for the TRANSIMS case-study [82]. In the remaining

portion of this chapter we will concentrate on this iterative approach in which the micro-simulation

and the planner modules are executed in turns to generate a self-consistent route-set. In TRAN-

SIMS, the planner module uses the link travel-times of the previous simulation run to re-plan a

certain fraction of the previous route-set (refer to Figure 4.2). This repeated planning process mim-

ics the decision process observed for a eet of human drivers in which most drivers rely on the routes

they used last. The remaining fraction of drivers, however, try to �nd a new route according to

the latest information about the performance of the street network. Since both the demand coded

in the origin-destination matrix and the travel-time feedback are dynamic, the iterative adaptation

with simulation feedback can be regarded as a truly dynamic assignment.
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4.2.1 Restricted route choice

A slightly di�erent iterative process was tried for the transit tra�c of the Autobahn network of

Nordrhein Westfalen [79]. For each origin-destination pair, the ten shortest paths were computed

beforehand using the Euclidean distance as cost function. Each driver retrieved a copy of the

alternatives corresponding to his origin and destination. The iteration was executed as follows:

preparation phase Each driver chooses one of his ten fastest paths. During the �rst ten iterations

he tries all ten alternatives sequentially. Afterwards, he usually chooses the path that has

proven to be the fastest. However, with a small probability p

other

= 0:05 he will test one of

the other routes.

execution phase The micro-simulation is started with all drivers executing their current routes.

The travel-time of the current route is stored for later comparison.

After 15 iterations, the variation of consecutive iterations is small. In contrast to the results

obtained in the Dallas - Fort Worth case-study and in the next section, the network throughput

actually decreases through re-planning. One reason for this may be that the choice of 10 options

is too restrictive, since the options were computed beforehand and therefore have little relation to

the actual tra�c pattern generated by the simulation. It seems very reasonable, therefore, to allow

all drivers to completely reconsider their route choice occasionally without further restrictions.

A similar approach is pursued by Gawron [41] for the iterative adaptation of route-plans in a

simple arti�cial network. Drivers choose from a limited number of prede�ned paths with a certain

probability distribution. After each iteration both the subjective costs of routes and the probability

distribution are updated according to carefully selected functions. The iterative process reaches an

equilibrium after approximately 100 iterations.

4.2.2 Corridor simulations

Another way to restrict the adaptive planning to a simple case is to consider all routes between

several origin and one destination. This geometry is called a corridor simulation. Emmerink et

al [28] investigated the inuence of pre-trip and en-route information in an iterative day-to-day

dynamic framework. Their test-bed was a simple arti�cial network consisting of 18 nodes and

28 links with a single origin and a single destination. Hu and Mahmassani [46] used an arti�cial

network consisting of 50 nodes and 144 links with 32 origins and 10 destinations. The geometry of

the network | one fast highway with parallel slower streets | also resembled a corridor.

Wunderlich et al [134] investigated the inuence of delayed travel-time information on route guid-

ance systems in a small corridor network consisting of 20 links and 10 nodes.
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4.2.3 Selecting the departure time

So far, the only variable in the route planning process is the route choice itself. Although TRAN-

SIMS will eventually include the choice of departure time, this additional option is currently not

implemented. The major obstacle is to de�ne a reasonable departure interval and providing a util-

ity function to rate (punish) the time di�erence between the actual departure time and the time

that was given by the activity that triggered the departure.

In some experiments (e.g. [18, 49, 50]) simple commuting networks were used to investigate how

iterative re-planning inuences the choice of departure time. The routes of all drivers were �xed

leading from a residential area through a heavily congested corridor to the o�ce area. Each driver

tried to leave his home just in time and arrive at his o�ce at a �xed time.

4.2.4 Finding the shortest path

The main component of the router is the shortest path algorithm. For a given source, departure

time, and destination the router tries to �nd a route which imposes the least \costs" on the driver.

The usual approach is to de�ne time-dependent link costs c

trav

j

(i) (also called weights) for each link

j and each time-bin i. As mentioned before, costs can be a combination of travel-time, distance,

and �nancial costs (such as tolls). They may also include preferences for certain street types (such

as scenic roads) or prohibitions (trucks through residential areas). Therefore, a better expression

for the shortest route would be the minimum cost route.

In principle, each driver has an individual subjective view of the costs of a link depending on his

�nancial and social background. It is possible that two drivers choose di�erent routes because

their link costs vary considerably, and neither of the routes has to be the shortest route (measured

as the sum of the Euclidean lengths of the links) or fastest route (measured as the sum of travel

times on the links). For the work presented here, however, we regard the whole eet of drivers

as homogeneous and use the link travel time as the only cost factor. This may cause certain

instabilities because minor changes in link travel-times may result in many drivers modifying their

routes collectively (see 4.2.6). Nagel [82] reports a positive e�ect when a 30%-noise factor was

added to the original cost function to create an arti�cial individual view of the network.

Once the link costs are de�ned, there is a wide variety of algorithms available to compute an exact

solution of the minimum cost route. Among those, Dijkstra's algorithm (see i.e. [2]) is probably the

most commonly used. Variations of the original algorithm try to improve the run-time performance

depending on speci�c characteristics of the cost functions and the underlying graph (see [19]). In

the case of a street network which is basically planar and the number of edges E is approximately

as large as the number of nodes N (except for a constant factor), Dijkstra's algorithm has a

complexity of O(N logN) for the computation of all minimum cost paths from one source to all

other destinations in the network. This version will be used in this chapter within the router module

and in Chapter 5 for online re-planning.

Another way to route vehicles is to use heuristic approaches that mimick the drivers' decision

process. Within the TRANSIMS project there have been attempts to implement an algorithm
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called likely-path using the geometric location of the destination to select the next link in a route

(see [4]). Starting at the source, the likelihood of the next link to be chosen depends on the angle

between the link and the destination: the smaller the angle, the larger the likelihood. Unfortunately,

since a highway connection usually does not follow a shortest Euclidean path, this algorithm does

not assign enough tra�c to highways. This is because drivers often have to move away from the

destination to access a highway ramp. For this and other reasons, the likely path approach was

abandoned.

4.2.5 Equilibrium

In principle, it is possible to formulate the route-set for a given O-D matrix and link performance

function as the solution of an optimization problem: all routes are to be selected in such a way

that a certain cost function is minimized:

� If the sum of all travel times is minimized, the system reaches the system optimum (SO).

� If the travel times are minimized in such a way that no driver can improve her travel time

unilaterally by choosing a new route, we speak of the user optimum. The system has reached

the so-called user equilibrium (UE).

� If the travel times are minimized as in the user equilibrium but at the same time the drivers'

perception of the network (and the corresponding travel times) is distorted stochastically we

speak of the stochastic user equilibrium (SUE).

The time-independent solution of this optimization process is thoroughly described in [115]. Unfor-

tunately, in the time-dependent case for a realistic network size the linear program resulting from

the optimization problem is far too complex to be solved on today's computers. Kaufman and

Smith [48] propose a mixed integer linear programming model to determine the ows in a simple

network. The setup with four nodes and eight links already exhausted the memory that is typically

available on workstations.

Note that for the equilibria described above the sum of all costs is well-de�ned but that there may be

more than one route con�guration yielding these costs. For very simple networks, both equilibria

may be equal, so that after a while the system optimum is reached although all drivers try to

optimize their routes independently. Braess [14], however, reports a case in which the construction

of a new street destroys the symmetry between both equilibria resulting in an overall worse network

performance. Therefore, this phenomenon is often called the Braess-paradox, although in fact it is

only the clash between two di�erent optimization criteria. It can be assumed that as a rule the

con�guration of the system optimum is not a local minimum of the (stochastic) user equilibrium

so that a system optimum is very unlikely to be stable even if it can be obtained.
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Figure 4.3: Oscillations between two alternative routes | There are two alternative routes

between source A and B. In iteration n, if the link travel-times are slightly di�erent, the router will move the

fraction f

r

of the ow Q

1

(n) going from A to B to the alternative ow Q

2

(n+1). In the next iteration this process

is reversed resulting in periodic uctuations.

4.2.6 Stability

During the iterative process routes are re-planned based upon the link travel-times of the previous

iteration subject to stochastic uctuations. Re-running the simulation with the same route-set but

using di�erent seeds for the random generators also yields di�erent tra�c patterns: links which

are operated very close to capacity may cause spill-backs if there are some additional vehicles that

arrive earlier than in other runs. In a domino e�ect spill-backs may have an impact on large areas

of the network. Consequently, for the router the view of the tra�c di�ers slightly in each iteration

resulting in a possible shift of routes, even though the iteration may already have relaxed. Consider

the following situation (see Figure 4.3): for a given section of a route between locations A and B

there are two similar routings, using either the solid or the dotted paths. Even if after a given

iteration n the ow Q(n) = 1 between A and B is equally distributed between alternatives 1 and

2, the stochasticity of the micro-simulation will disturb the feedback travel-times for the links.

As a consequence, one of the alternatives will be shorter than the other so that a fraction f

r

of

routes is moved from the longer to the shorter alternative. In the next iteration this e�ect may be

reversed because of the usually monotonous relationship between link travel-time and link-density.

Therefore, the routes assigned to the alternatives are subject to an oscillation of relative amplitude

of at least f

r

.

4.3 Using PAMINA for truly dynamic assignment

At this point we will use the micro-simulation PAMINA to iteratively adapt a route-set consisting

of all routes going through an 8x8 [km] area inside Dallas. The map includes all street types such

as highways, arterials, and local streets in residential areas (see Table B.1). For the case-study
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experiments, the initial route-set was derived from trip-table provided by the North Central Texas

Council of Governments (NCTCOG). Refer to [82] for a more speci�c description of this data.

4.3.1 Router and feedback data

In this section we outline the router used in the case-study and the nature of the data used as

feedback from the micro-simulation to the planner.

During the micro-simulation each link of the street network is constantly monitored. Every 10 time-

steps the current velocities of all vehicles on each link are accumulated. Every t

b

= 900 time-steps

(15 minutes) the values are converted to link travel-times and written to a �le. During grid-lock

on a link the sum of velocities is zero which would result in an in�nite travel-time. Therefore, the

travel-time is limited to the time a vehicle would spend on the link if it were going at 1/100th of

the free speed of the link. If the link is vacant, the travel-time is set to be exactly free speed.

The TRANSIMS iteration uses two �les for its feedback process. The �rst �le, equivalent to the

one described above, contains average link travel-times. The data, however, is retrieved di�erently:

vehicles leaving links trigger events which are collected in a statistics �le. After the simulation a

post processor aggregates all travel-times into time-bins. There are two reasons for a vehicle count

of zero: (a) no vehicle left the link, because the there was no tra�c on the link, or (b) no vehicle

could leave the link because a link up-stream was completely grid-locked. A second statistics �le

containing the link occupancies is used to decide which case applies.

The planner reads the link travel-times t(i) and assigns them to 15-minute time-bins indexed by

i. For each route of the input route-set (e.g. the route-set of the previous iteration) the plan-

ner determines whether it is re-planned or simply written to the output route-set without any

modi�cation.

When the route is to be re-planned, the planner applies Dijkstra's shortest-path algorithm using

the previously collected link travel-times. Two slightly di�erent versions of the planner (RP1 and

RP2) are used. For both of these versions, T is the distance of the node which is to be labelled

next in Dijkstra's algorithm. It corresponds to the wall-clock time at which a vehicle following the

shortest path would arrive at the given node.

RP1 is the route-planner which was also used in the iterative reference run of the TRANSIMS

project. It uses the time-bin i = b(T + t

b

)=t

b

c which corresponds to a \look-ahead" time-shift

of t

b

. This improves the relaxation of the TRANSIMS iteration by anticipating congestion

on links [82]. Wunderlich et al [134] investigated the impact of delay of travel time feedback

on the convergence of the iterative routing process. They also report an improvement with

increasing \back-dating" of travel time information.

For time-bins after 12:00 pm the planner assumes free speeds for all links again. Turning

prohibitions at intersections are handled by preventing the shortest path algorithm from

proceeding into any prohibited direction. Note that this approach may exclude complicated

paths that visit a node more than once to circumvent prohibitions. Since the number of

a�ected plans is very small, this error can be ignored.
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RP2 is the research version of the planner. Since its source code is more easily accessible it is used

for most of the runs. In contrast to RP1, the time-bin is computed as i = bT=t

b

c. Also, in

contrast to RP1, the research version completely ignores left turn prohibitions. For time-bins

after 12:00 pm, the travel-times of time-bin 11:45 am are used.

In both cases, t(i) can only be regarded as an estimate, since it is averaged over a period of 15

minutes. RP1 tends to take time-bins which may be too far in the future, whereas RP2 does the

opposite: it only uses data which is slightly outdated. A more exact approach would be to use T to

compute the �rst bin i as RP1 does, but use later time-bins if the travel-time on the link is longer

than the bin width. This way, we average the travel-time over all bins that the vehicle \visited"

while it was on the link. The �rst and the last bins are only weighted with the respective fraction

that they were used.

4.3.2 Route-set conversion

Before the route-set can be used as input for the simulation, the routes extending over the whole

planning area of Dallas - Fort Worth have to be restricted to the simulation area as follows. For

each route of the original route plan, determine the �rst link inside the study-area. If the estimate

of the entrance time into that link lies within the simulation-time window (5:00 am to noon),

the beginning of the route is restricted to the �rst link inside the area. The entrance time into

the study-area is used as the new departure time. If the route leaves the study-area again, the

remaining portion of the route will also be removed. The new scheduled travel-time corresponds

to the time spent inside the study-area. After conversion, all routes are sorted according to their

new departure times.

For the travel-time estimates outside the study-area the free speeds of the links are used. This

results in di�erences to another micro-simulation (see SCAM in 4.4.1) used for the same test-bed

which actually simulates tra�c outside the study-area.

Also note that, in principal, there may be routes entering and leaving the simulation area more

than once. The current version of the micro-simulation treats these routes as though they had only

one entrance point into the study-area. The fraction of a�ected routes can be assumed to be small

due to the convex shape of the study-area.

4.3.3 Iteration parameters

The re-planning process as it is used within the current context is de�ned by a small set of param-

eters: the choice of the initial route-set, the re-planning fraction, and the route selection.

Initial route-set

At the start of the iteration there is a choice between three di�erent initial route-sets that were

generated from the O-D matrix based on
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� free speeds (called FS) as time-independent link-weights,

� the logical link-lengths (called SP for shortest path) as time-independent link-weights,

� an empty route-set (called VD for void) in which all routes were deactivated. In this case

\re-planning" a route means planning the route for the �rst time and activating it. Once a

route is activated it remains activated throughout the iteration.

Re-planning fraction

Choosing the re-planning fraction f

r

is based on a trade-o� between computational speed and

stability of the iterative process. Large fractions allow fast re-planning of all routes in the initial

route-set. As we will see later on, one prerequisite of relaxation is that most of the routes have

been re-planned at least once. As the iteration proceeds, however, large fractions have the clear

disadvantage of moving routes back and forth between similar alternatives (see [82]).

The aim of the iteration process should be either to keep the re-planning fraction small throughout

the process or at least reduce the fraction more and more as the iteration approaches relaxes.

Route selection and route aging

The above-mentioned re-planning fraction does not yet de�ne which subset of the previous route-set

is to be re-routed. One can easily imagine a selection according to the following criteria:

� Criteria associated with the tra�c network, such as routes going through a certain part area

of simulation area. This is related to tra�c state information that may only be available on

certain types of streets (e.g. major arterials).

� Criteria associated with the individual driver such as demographic information on the driver

or the origin of the trip, i.e. wealthy drivers may have better access to information.

� Criteria associated with data retrieved from the simulation such as the planned travel-time

or the actual travel-time.

� Criteria associated with data retrieved from the planner such as the iteration of the last

re-planning of a route.

All groups of criteria except for the last must be handled with care since they may bias the selection

towards a subset of plans within the route-set. For example, selecting those routes �rst whose

actual travel-times exhibit the largest di�erence to the scheduled travel time is dangerous if there

are regions in the network that are only connected to the remaining part through a small number of

bottlenecks. Re-planning those routes will not improve the performance since the network does not

o�er any real alternatives to the bottlenecks. We have, therefore, decided to use the age (denoted as

\a") of a route (the number of elapsed iterations since it was last re-planned) as the only parameter.

In particular, we chose the following versions of route selection:
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random The routes are selected at random with the probability f

r

. The planner does not distin-

guish between routes in any way. All routes are picked with the same probability P

rnd

= f

r

.

scheduled random The routes are also randomly selected, but the re-planning fraction was ex-

plicitly chosen for every iteration. We used this scheme only for the �rst two test-runs, since

it required user interaction. The iteration of the TRANSIMS-14 run was also based upon a

schedule (see Table 4.1).

linear age The likelihood P to select a route of age a is given by P

lin

(a) = qa were q is a factor

that only depends on f

r

and is thus a constant of the iteration.

forced reduction with random smoothing The N routes are split into two groups: those that

have never been re-planned, and those that have been re-planned at least once. For n itera-

tions we re-plan N=n plans of the �rst group and an additional fraction of f

r

of the second

group. For iterations after n, only the second portion of re-planning remains. The probability

in iteration i is computed as P

red

= f

r

if i > n or the route has already been re-planned, and

P

red

= 1=(n+ 1� i) otherwise.

All of the above versions eventually lead to a stationary age distribution f(a) which can be an-

alytically predicted (see B.1). The �rst and the last versions result in a decreasing exponential

distribution with

f

rnd

(a) = f

r

(1� f

r

)

a

;

the second one results in a normal distribution

f

lin

(a) = f

r

e

ba

2

:

Since the linear age version tries to re-plan older routes sooner than younger ones, the age dis-

tribution is biased towards younger plans compared to the random version. This can be seen in

Figure B.1 for f

r

= 0:05.

4.3.4 Relaxation

So far we have only described how we execute the iterative process and what parameters we use

to inuence it. A very important aspect is how to measure the actual improvement achieved by

re-planning. As we have seen in Section 3.4 the micro-simulation exhibits grid-lock whenever loops

in the network links are completely �lled with vehicles. One obvious improvement would be a

reduction of the number of grid-locks. The left-hand side of Figure 4.4 shows the results from

an iteration using random route-selection and a re-planning-fraction of f

r

= 0:01. We see the

number of vehicles in the study-area plotted against the simulation time (one curve for every tenth

iteration). It is easy to detect two transitions in the �gure. First, between iterations 30 and 40

the simulation stops grid-locking with the vehicle count remaining constant after a certain point

in time. Second, between iterations 60 and 70 the throughput of the system has improved so that

practically all vehicles are able to leave the study-area during the simulated time. As the iteration
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Figure 4.4: Run 4: Number of vehicles in the study-area | Left: For early iterations the number

of vehicles in the study-area exhibits grid-locks (horizontal lines). As the process proceeds the grid-locks disappear until

eventually most of the vehicles are able to leave the study-area. Right: The last ten iterations show very little variation.

Note the di�erent scale! The number of vehicles in the study-area proves to be an impractical measure for the progress

of the iteration process.

continues and all grid-locks have been dissolved, these curves get less and less informative since the

absolute di�erence between simulations decreases. The right-hand side of Figure 4.4 shows the last

11 of the 110 iterations. Although there is still some improvement visible between the set of 100

through 104 and the set of 105 through 110, the change is not as drastic as in earlier iterations.

Changing the display from the number of vehicles in the study-area to the aggregated travel-

time gives more insight. The left-hand side of Figure 4.5 shows a continuous decrease with some

underlying noise. The improvement is mainly caused by three factors:

a) The tra�c volume is increasingly distributed among all street types in contrast to the orig-

inal route-set which is biased towards fast routes (FS) using the network hierarchies in a

heterogeneous fashion.

b) Since the capacities of the access links to the study-area are limited, there is a growing spill-

back of vehicles at the boundaries as soon as demand exceeds capacity. The feedback for link

travel-times does not punish those queues in the original version. In Section 4.3.5 we will

introduce a correction to the feedback which takes care of queue delays.

c) The number of routes that are routed through the study-area decreases. The right-hand

side of Figure 4.5 depicts the number of routes planned, inserted, and executed. After 110

iterations only 263281 of the initial 294883 routes remain reducing the tra�c load by roughly

10%. This artefact will also be discussed in Section 4.3.5.
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Figure 4.5: Run 4: Sum of travel-times and executed routes | left: Accumulated travel-time

tt

acc

of all vehicles in the study-area as a function of the iteration number. It is obvious that despite the high number of

iterations, the value of tt

acc

has not su�ciently relaxed. right: Number of routes routed through the study-area, those

inserted into the study-area, and �nally those successfully executed by noon.
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Figure 4.6: Sum travel-time for selected runs| The plot depicts the sum travel-time with respect

to the iteration number. Run 1,3,4, and 5 are not su�ciently relaxed. Runs 10, 11, and 12 level o� at around

1:2 � 10

8

[sec], run 13 slightly higher.
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iteration 1 - 3 4 - 6 7 8 - 9 10 11 12 13 - 14 accumulated

run 1 0.20 0.10 0.05 0.05 0.02 0.02 - - 1.09

run 2 0.20 0.10 0.05 0.05 0.02 - - - 1.07

TRANSIMS 14 0.10 0.10 0.10 0.05 0.05 0.05 0.05 0.02 0.99

Table 4.1: Iteration parameters for runs with scheduled re-planning fraction | The entries

show the respective re-planning fraction f

r

for each iteration. All of the runs listed here used planner RP1 with random

re-planning selection.

run 4 5 7 8 10 11 12 13/16 14 15 17

planner RP1 RP2 RP2 RP2 RP2 RP2 RP2 RP2 RP2 RP2 RP2

init. route-set FS FS VD SP FS FS FS FS FS FS FS

iterations 110 110 60 60 20 60 60 60 80 80 60

reductions - - - - 20 - - - - - -

fraction f

r

0.01 0.01 0.05 0.05 0.01 0.05 0.05 0.05 0.05 0.05 0.05

selection rnd rnd age age red. age rnd age age age rnd

level-0-corr. - - - - - - - - lin. sqrt -

queue feedb. - - - - - - - yes - - yes

Table 4.2: Parameter combinations of iteration runs | For the initial route-set FS denotes free

speed, VD denotes void and SP denotes shortest path.

Figure 4.6 shows sum travel-times for selected runs (see Table 4.2). Apparently, the iteration

number does not relate to the improvement of the iteration unless the re-planning fractions were

the same for all runs. It does, however, give an indication of the speed of the relaxation since the

running time of the router is almost independent of the re-planning fraction for small fractions

2

. Due

to the slow relaxation of runs 4 and 5, they do not reach the assumed equilibrium at approximately

1:2 � 10

8

[sec] aggregated travel time, despite the high number of iterations (e.g. 110). Figure 4.7

shows the number of vehicles in the study-area with respect to simulation-time. Although all curves

exhibit a similar shape, there are distinct di�erences in the maximum number of vehicles. Possible

explanations are that the runs have actually relaxed into di�erent states or that the iterations 1,

4, and 5 are not su�ciently relaxed. Next, we will see that the latter is true.

Accumulated re-planning fraction

A more useful comparison can be obtained by using the accumulated re-planning fraction f

acc

as

the ordinate of the plot. This fraction is de�ned as the sum of all individual re-planning fractions

up to a given iteration. Figure 4.8 shows the same curves as in Figure 4.6 plotted against f

acc

. The

curves for all runs coincide very well. Runs 1 and 11 exhibit some points outside the general slope.

This is due to extreme grid-locking of run 11 during early iterations and very few grid-locks during

2

This is due to the large constant portion imposed by I/O. The micro-simulation itself, of course, is completely

independent of the re-planning fraction.
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Figure 4.7: Vehicles in study-area for selected runs | Runs with a small accumulated re-

planning fraction (runs 1, 4, and 5) still show higher peaks at rush hour than those with a high fraction (runs 10,

11, and 12). Run 13 has a higher peak for reasons discussed in 4.3.5.
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Figure 4.8: Relaxation by accumulated re-planning fraction (all iterations) | With

respect to the accumulated re-planning fraction all curves (except for run 13) collapse into one. The di�erences of

runs 1 and 11 are caused by exceptionally few or many grid-locks, respectively. Also see Figure 4.9.
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Figure 4.9: Relaxation by accumulated re-planning fraction (non-grid-locking iter-

ations) | The curves were restricted to those iterations with less than 25,000 vehicles in the study-area at

10:00 am.

the �rst iteration of run 1. Note that run 13 levels o� at a slightly higher sum travel-time than the

other runs. This will be discussed in 4.3.5.

In Figure 4.9 the similarity becomes even more obvious after removal of all iterations with vehicle

counts below 25,000 at 10:00 am. The peaks of runs 1 and 11 have disappeared. Run 10 is the �rst

one to reach a sum travel-time of approximately 1:2 � 10

8

shortly after an accumulated re-planning

fraction of one. At this point, it is the only run in which all routes have been re-routed at least

once.

Actual re-planning fraction

In addition to the accumulated re-planning fraction we de�ne the actual re-planning fraction as

the fraction of plans that have been re-planned at least once. The left-hand side of Figure 4.10

shows the sum travel-times plotted with respect to their actual re-planning fraction. As before, the

curves on the right-hand side are restricted to those iterations with vehicle counts below 25,000 at

10:00 am. The plot clearly separates the runs with random selection (runs 1, 4, 5, and 12) from

those with linear age selection (runs 11 and 13). Run 10 with forced reduction selection is at �rst

closer to the random selection, but later on approaches the linear age selection curves. The �gure

also shows that using the actual re-planning fraction as ordinate makes little sense as soon as the

fraction approaches one. For runs 10 through 13 the points are simply stacked above one another

since the fraction is limited to 1 by de�nition.
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Figure 4.10: Relaxation by actual re-planning fraction| Left: Sum travel-time plotted against the

actual re-planning fraction, which corresponds to the fraction of routes that have been re-planned at least once. Right:

Only those iterations with less than 25,000 vehicles in study-area at 10:00 am are plotted. There is a clear di�erence

visible between runs 1, 4, 5, and 12 (all random selection) on the one hand, and runs 11 and 13 (both linear age selection)

on the other hand. Run 10 seems to lie in between.

4.3.5 Artifacts

The planner and the micro-simulation do not operate on the same scope. Since the micro-simulation

only executes those portions of the routes within the study-area one expects phenomena which are

due to boundary e�ects. We would like to describe two observations we made during the simulation

runs and potential remedies.

Loss of vehicles

The tra�c which is generated for the study-area produces higher link-travel times than those

derived by the given free speeds

3

. Therefore, the link travel-time feedback will generally discourage

the planner from using links in the study-area compared to the links outside which keep their high

free speeds. We di�erentiate between two e�ects:

� Routes with either source or destination inside the study-area may have a peculiar shape:

instead of computing an overall fastest path, the planner will rather minimize the portion

inside the study-area.

� Routes with neither source nor destination (through-tra�c) inside the study-area may be

re-planned such that they avoid the study-area altogether. The same e�ect is reported in [82]

3

Except for those time periods with very little tra�c during which a measured average speed (almost speed-limit)

may actually be higher than the corresponding free speed.
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Figure 4.11: Route loss through re-planning | The left-hand side shows the number of routes routed

through the study-area for di�erent runs. The right-hand side shows the number of routes lost because they lie outside

the time-window or outside the study-area. Note that run 14 seems to become instable again after a re-planning fraction

of 4. This is due to the high number of vehicles routed through the study-area.

where the number of plans was reduced from 285,393 to 258,501 after an accumulated re-

planning fraction of 0.95.

The left-hand side of Figure 4.11 shows the loss of routes during the iteration process. The number

decreases from the original value of 294,800 to approximately 250,000. Run 11 shows a peculiar

behavior: a minimum is reached slightly above an accumulated re-planning fraction of one. After

that, the number of plans increases again to level o� at around 254,000. This increase is due to

queuing at the boundaries of the study-area which will be described at the end of this section.

We extended the router to include a so-called level-0 correction. Before a re-routing step for each

link j (with length L

j

) and each time-bin i, we converted the link travel-times T

trav

j

(i) into link-

velocities v

j

(i) = L

j

=T

trav

j

(i). Then, we averaged the ratio v

free

j

=v

j

(i) for all links resulting in a

single factor

c(i) =

P

j

L

j

v

free

j

=v

j

(i)

P

j

L

j

for each time-bin. This factor itself (in run 14) or its square-root (in run 15) was multiplied to

all link travel-times outside the study-area. Now, looking at the whole planning area from far

away, the study-area should no longer look worse than the remaining portion. The left-hand side

of Figure 4.12 depicts the correction factor c(i) for di�erent iterations. For early iterations, the

factor increases considerably due to the large number of grid-locks during rush hour. As grid-locks

vanish, the correction factor diminishes, too.
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Figure 4.12: Level-0 feedback: correction factor and insertion rates | Left: The plot shows

the correction factor for several iterations of runs 14 and 15. Note the logarithmic scale on the y-axis. Right: Number of

insertions per 15 [min] interval. The route-set of iteration 0 serves as a reference: there are no insertions after 11:00 am.
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Figure 4.13: Level-0 feedback: routed and executed vehicles | Curves without points denote

the number of routes through the study-area. Curves with points show the corresponding number of executed routes.

Run 14 exhibits a very instable route execution compared to all other runs. Even after an accumulated re-planning

fraction of 3.0 there are still iterations with partial grid-locks.
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Run 14, with activated level-0 correction (see Figure 4.11), loses less than half of the cars compared

to the other runs. Instead of losing routes with respect to space, we start losing routes with respect

to time. The right-hand side of Figure 4.12 depicts the number of vehicles entering the study-area

for each 15 minute bin. Compared to the original curve of iteration zero, early iterations show a

large number of vehicles scheduled to be inserted after 12:00 pm. As the iterative process continues,

the shift to late insertions times decreases. However, still after 60 iterations there are measurable

counts outside the simulation period. This �gure also shows an artifact of the router RP1: an

earlier run with level-0 feedback exhibits a steep peak of insertions at noon. This is because RP1

uses the free ow link travel-times for all time-bins after 12:00. All routes that have been started

before noon but have not reached the study-area because of signi�cantly increased travel-times

before noon are suddenly accelerated and reach the study-area within a very short time-interval.

For that reason all other level-0 feedback runs were executed with router RP2.

For run 15 the loss with respect to time is not as strong as in run 14. On the other hand, there are

fewer plans remaining inside the study-area.

Figure 4.13 gives more insight into the stability of the route-sets obtained from the level-0 feedback.

Run 15 still exhibits strong uctuations in the number of routes that were successfully executed

before noon. This, of course, is not a result of the level-0 feedback as such, but simply due to

the high number of vehicles that are still routed through the study-area. This load, about 25,000

vehicles higher than in run 13, approaches the maximum capacity of the study-area.

Queue feedback

The vehicle insertion of the original route-set (see iteration 0 on the right-hand side of Figure 4.12)

is mainly restricted to the time-period between 5:00 am and 10:00 am. One would expect that due

to the rather small spatial extent of the study-area all vehicles should be able to exit by around

11:00 am once the grid-locks have vanished. Surprisingly, this is not the case. Figure 4.15 shows

the number of vehicles pending at 11:57 am. In comparison to run 11 in Figure 4.11, here runs 11

and 12 have a minimum shortly after accumulated re-planning fraction 1.0. At the end of the

iteration both have more than 10,000 vehicles waiting in queues by noon. The queuing of vehicles

at the boundaries to the study-area is mainly caused by insu�cient travel-time feedback from the

micro-simulation (see Figure 4.14). As long as no grid-lock occurs on a feeding link, the travel-time

can be accurately estimated by the average-velocity. As soon as all vehicles on a link are stalled, the

travel-time | at least theoretically | should be in�nite, but is actually computationally bounded

by a very large (unattractive) value. The value is constant and independent from the duration

of the grid-lock. The overall travel-time, however, increases since the waiting time (delay) in the

queue has to be included.

For run 13 we introduced delay counters for all sources of the study-area. At each time-step we

added the number of vehicles currently queued to this counter. For each vehicle that was inserted

and removed from queue we subtracted the number of time-steps it had been waiting in the queue.

Each 900 seconds (the usual interval at which the travel-times were collected) we added the average

waiting time (delay counter divided by the number of vehicles queued) to the travel-time of the
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normal travel-time feedback yields a time-independent penalty (center). The queue-feedback adds an additional
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and 17 with queue feedback do not exhibit any pending vehicles anymore.
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Figure 4.16: Reproducibility of results. | Runs 13 and 16 share the same iteration parameters. They

only di�er by the seed of the random generator. Runs 7, 8, and 11 only di�er by the initial route-sets and the random

seeds. Especially the right-hand side shows the good reproducibility.

link associated with a queue. The result can be seen in Figure 4.15. Run 13 does not show any

queued vehicles after an accumulated re-planning fraction of 1.0.

4.3.6 Reproducibility of iteration results

The parameter combination of run 11 was reused to produce the results of run 16. The only

di�erences between the two runs are the random seeds used in the simulation and in the planner.

Figure 4.16 shows the curves for sum travel-time and routes/executed routes. The similarity of the

plots is very good.

Moreover we compared runs 7, 8, and 11 which only di�er by their initial route-set and their random

seeds. Figure 4.16 shows the similarity of the results. As expected, the choice of the initial route-set

only makes a di�erence for early stages of the iteration. After 40 iterations, because most of the

routes have been re-planned at least once, \knowledge" of the initial oute-set is lost. However,

the initial route-set SP of run 8 seems to be less stable than the other two: after an accumulative

re-planning fraction of two it still produces two iterations with heavy grid-locks.

4.4 Example: TRANSIMS case-study

In Chapter 3 we saw that PAMINA is able to reproduce reasonable and intuitive results for a

simple simulation set-up. All the runs were done without any prior validation or tuning of simu-

lation parameters. The question is now whether such a simple approach can yield useful results
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feature TRANSIMS PAMINA SCAM

simulation area study-area study-area Dallas/Ft.Worth

multi-lane CA yes yes no

lane-change symmetric asymmetric n/a

lane-change conict even-odd TS L to R priority n/a

speed limit yes yes no

v

max

3 4 5

p

decel

0.2 0.3 0.25

approach behavior yes no no

tra�c lights exact average random

turning pockets yes no no

intersection queues yes no no

lane interference yes no no

stop/yield signs yes no no

vehicle loss yes no no

pre-loading yes no n/a

pre-processing [min] 120 6-8 12

execution [min] 330 30-35 15-20

post-processing [min] 60 - -

Table 4.3: Overview of simulation features active in case-study comparison | This table

refers to PAMINA III. For an overview of the versions of PAMINA see Table 3.1.

especially in comparison to other micro-simulations. Within the TRANSIMS project we had the

opportunity to compare three simulations operating at di�erent levels of �delity. The �rst one, the

TRANSIMS simulation, represents the highest level of �delity. Next is PAMINA which simpli�es

the approach behavior to intersections and the handling of intersections. PAMINA is about 15

times faster than the TRANSIMS simulation so that more intensive investigations were possible.

The third simulation SCAM (= Simpli�ed Cellular Automaton Model, see [118]) was implemented

by P. Simon. It manages to use single lane CA links for the whole network by scaling the number of

routes appropriately. This simulation is another order of magnitude faster than PAMINA. SCAM

was used to execute routes in the planning network instead of clipping them to the study-area

4

. In

the following section we describe the two other simulations in more detail.

TRANSIMS Simulation

TRANSIMS is, like PAMINA, a microscopic tra�c simulation using the symmetric multi-lane

extension of the Nagel/Schreckenberg CA model for its tra�c links. The approach behavior close

to intersections, however, is di�erent: A given destination link can usually be reached by a subset

4

In principle, all three simulations are capable of simulating the whole Dallas - Forth Worth network. One reason

not to use the medium and high �delity models was the insu�cient resolution of the street network outside the

study-area.
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of incoming lanes only. At about 70 grid cells prior to the intersection, vehicles start to move to

the correct lane that will take them to their respective destination link. The closer they get to

the intersection, the more \urgent" the incentive to change lanes becomes. Vehicles that are not

able to reach a lane corresponding to their destination will go straight through the intersection.

These \lost vehicles" [82] will be removed from the network at the next upcoming intersection. As

a result, the number of fully executed trips may actually be smaller than the number of routes in

a plan.

TRANSIMS di�erentiates between unsignalized (with stop-signs or yield-signs) and signalized in-

tersections with a detailed direction-dependent phasing scheme. In all cases vehicles are required

to check for interfering tra�c on oncoming or destination lanes. This is done by requiring a certain

number of sites close to the destination site to be free from other vehicles. For a detailed description

of the ow characteristics of the TRANSIMS simulation see [89].

The TRANSIMS pre-processor that converts the original route-plan into a format which is under-

stood by the simulation allows to pre-load the tra�c network for a given simulation start-time. All

vehicles that have a departure time before the simulation start-time are inserted at their scheduled

position using the free speeds of all links. In this way the loading phase during which there is a

lack of vehicles in the system can be shortened. Within the context of the comparisons presented

here, this additional feature is insigni�cant, since the simulation was started at 5:00 am. At this

time the number of vehicles is so small that any loading e�ects can be ignored.

Simpli�ed Cellular Automaton Model (SCAM)

Another way to reduce the complexity of the micro-simulation is to replace the computationally

expensive multi-lane links by single-lane links. In SCAM the ratio between the ow 7800 [veh/hour]

of the maximum throughput link (4 lanes) and the ow 1800 [veh/hour] on a standard single-lane

link is used as a scaling factor. This factor de�nes what fraction of the original route-plan is actually

fed into the simulation.

At intersections the inow into destination links is de�ned by a transition probability p

T

between

0 and 1 which is determined from the individual throughput of the respective destination link.

p

T

= 1 corresponds to maximum throughput for the area under consideration. Since the link with

the highest capacity is a four-lane highway, a probability of approximately p

T

� 0:25 corresponds

to a single-lane freeway. In normal links with tra�c controls at their end this value may be reduced

even more. Note that the relationship between p

T

and the ow is not linear (see [118]).

In contrast to the setup of the previous two micro-simulations, SCAM uses the routes as they are

generated by the planner and not in their representation clipped to the study-area. This generates

slightly di�erent results for the loading phase of the network which will be discussed later.
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Figure 4.17: Case-study test-bed: vehicles in study-area with f

acc

� 1:0 | The iteration

numbers of the PAMINA runs were chosen to be as close as possible to the accumulated re-planning fraction of

the TRANSIMS run (f

acc

= 0:99). For run 11 we had to take f

acc

= 1:16 since all earlier runs were still slightly

grid-locked.

4.4.1 General comparison

For an initial comparison of the simulations we plotted the number of vehicles in the study-area as

a function of the simulation time. However, for the TRANSIMS simulation, data for only one run

(called TRANSIMS-14) was available. This data was based on a route-plan generated in fall 1996.

The iterative re-planning scheme is characterized by the re-planning fractions given in Table 4.1.

The number of lost vehicles was about 15,000 to 20,000. Figure 4.17 depicts the results of several

runs obtained from PAMINA (see Chapter 4) and one of the results from SCAM. We chose the

curves of those iterations which were closest to the accumulated re-planning fraction (f

acc

= 0:99) of

the TRANSIMS run. Run 10 matches the TRANSIMS run best throughout the simulation period.

Most other PAMINA runs exhibit a considerably higher maximum number of vehicles at 8:30 am.

The SCAM run is somewhat lower than all other curves. This e�ect is especially pronounced for

early simulation hours until 7:30 am. It is caused by the fact that SCAM simulates the routes for

the whole Dallas - Fort Worth area, so that tra�c jams occurring outside the study-area reduce

the number of vehicles entering the study-area [117].

In Figure 4.18 we have replaced the PAMINA curves by later iterations. For iteration 60, route-sets

can be assumed to be well-relaxed (see 4.3.4). The curves for runs 11 and 12 now lie below the

TRANSIMS curve after 7:45 am. The curve for run 13, however, matches the TRANSIMS curve

very closely, especially after 9 am. It even reproduces a little ledge at 10:30 am correctly, which is

not visible at all in run 11.

Unfortunately, it remains unclear if the underlying route-plan used for the TRANSIMS run is as
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Figure 4.18: Case-study test-bed: vehicles in study-area in a well-relaxed system |

For large iteration numbers the PAMINA runs 11,12, and 13 can be assumed to be well relaxed (also see Figure 4.8).

The curves depict the results of iteration 60.

well relaxed as runs 10 through 13 for PAMINA. If one compares the sum travel-times, it seems

very unlikely: The sum of travel-times of run 11 is about 20% lower than the in the TRANSIMS-14

run.

Figure 4.19 shows the sum travel-time for three runs of PAMINA, one run of SCAM and the

TRANSIMS-14 iteration. We make the following observations:

(i) The �nal sum of all runs are in the range 1:0 : : : 1:4 � 10

8

[sec]. As seen before, the queue-

correction run 13 is slightly higher. SCAM has the lowest sum travel-time, which could be

expected from Figure 4.18, since the number of vehicles is generally lower throughout the

simulation period.

(ii) The shape of the curves is di�erent for SCAM and PAMINA. While the PAMINA curves

show a steadily decreasing slope towards later iterations, the SCAM curve seems to have a

linear slope �rst and a slightly increasing slope just before the end of the relaxation process.

(iii) The SCAM curve exhibits much stronger uctuations than the PAMINA curves, especially

compared run 4 which has the same re-planning fraction. A factor of �

p

5 can be explained

by the smaller number of vehicles that are simulated by SCAM. As mentioned above, the

original route-set was scaled by a factor of 1=5.

Also, this e�ect may again be due to SCAM's simulation area: grid-locks not only occur inside

the the study-area but also outside. For all grid-locks on feeding links outside the study-area

the travel-time (or rather waiting-time) does not contribute to the curve.
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Figure 4.19: Sum travel-times for di�erent simulations| The curves show the sum travel-time

of all vehicles for several runs. Unfortunately, for TRANSIMS only one value can be displayed with f

r

= 0:99.

Note that the slopes for SCAM and PAMINA are qualitatively di�erent: while for PAMINA the improvement of

travel-time slows down, for SCAM it even seems to accelerate before the end of the relaxation process.

So far all comparisons referred to highly aggregated data. In the following section we will reduce

the degree of aggregation.

4.4.2 Speci�c comparisons

For the purpose of comparison to one of TRANSIMS's many simulation statistics we restricted

the collection of data to those vehicles that had their origins outside the study-area and their

destinations within. Speci�cally, during the simulation we collected the following: for each vehicle

i entering the study-area we stored the time of entry T

i

, the location of entry S

i

, the location of the

destination D

i

, and the travel-time t

i

between S

i

and D

i

. From these we computed the Euclidean

distance L

i

between S

i

and D

i

and the average speed v

i

= L

i

=t

i

. Finally, we chose the median

v

med

for all v

i

in each 15-minute time-bin of T

i

. Figure 4.20 shows the results for TRANSIMS and

three iterations of run 10. The curves match qualitatively: both start at high median speeds in

the early morning and reach a local minimum at around 8:00 am. Quantitatively, the TRANSIMS

curve shows less signi�cant extrema.

We also included a curve for iteration 12 of run 11 in the diagram. It is surprising that, despite

the similarity of run 11 and TRANSIMS in Figure 4.17, there is a clear di�erence for later hours:

the PAMINA curve is well below the TRANSIMS curve and has a wide-spread minimum between

8:30 am and 10:30 am.

For runs 11 and 13 we plotted the average speeds for three consecutive iterations (58, 59, and 60).
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Figure 4.20: Comparison of median speeds | Both PAMINA and TRANSIMS exhibit the same

qualitative shape with a pronounced minimum during rush hour.

While run 11 shows very little variance throughout the simulation period, run 13 show signi�cant

variance, especially after 9:00 am. This is partly due to the increased number of vehicles in the

study-area at that time, which results in a higher probability of grid-lock. Also, run 11 may use the

vehicles in queues as particle bu�ers: if for any reason a grid-lock is dissolved, the system can be

�lled again with vehicles waiting in queues. Apparently, this seems to have a stabilizing e�ect for

the tra�c inside the study-area, like ramp metering has a positive e�ect on highway tra�c. The

overall bene�t, however, may be questionable, since some drivers are queued for hours outside the

study-area.

4.4.3 Travel speed by origin

Using the angle between S

i

and the center of the study-area (see Figure 4.21) we divided the

incoming vehicles into four groups corresponding to the directions East (sector 0), North (sector 1),

West (sector 2), and South (sector 3). For run 11, Figure 4.22 depicts the mean travel-speed by

sector and the overall mean. It is obvious that the quality of traveling into the study-area strongly

depends on the drivers' origin. Drivers from the South have the highest travel-times before the

rush-hour (before 7:30 am) and after the rush-hour (after 9:00 am). During the rush-hour drivers

from the North have fastest access to the study-area. Their travel-speeds (12 : : : 16 [m/sec]) show

the weakest overall time-dependence of all sectors. Vehicles from the North and the East maintain

their low trip-speeds until the end of the simulation period. Since there are no grid-locks at 11:00 am

in run 11, this average speed is dominated by vehicles being ejected from queues at the boundaries

of the study-area. Since the insertion logic allows ows very close to link capacity, what we see

here are basically a few links operating at capacity.
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v=1
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3

Figure 4.21: Study-area: route origins by sector | Map of the study-area including all local

streets. The sources of the four sectors are marked with small symbols. All destinations lie within the rectangle

plotted with dotted lines. This map also shows the links with reduced speed-limit that were used in the online

simulation.
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Figure 4.22: Run 11: average velocities by sectors | The curves display the mean speed of

vehicles coming in from the four sectors. Vehicles originating in the East and in the North have low travel-speeds

until the end of the simulation period. Vehicles from the West and South undergo the usual rush hour between

7:00 am and 10:30 am. Afterwards their average speed is back to free ow.
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Figure 4.23: Run 13: average velocities by sectors | Run 13 exhibits average speeds which are

generally somewhat lower than those of run 11. At 11:00 am, however, all directions have almost reached free ow

speeds again. Note that due to the low number of vehicles after 10:30 am the curves tend to be rather erratic after

that time.
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4.4.4 Turn counts

As a preliminary result we would like to present a comparison that was conducted in coorporation

with M. Pieck and K. Nagel. The NCTCOG provided turn count data for selected intersections

inside the study-area. Therefore, both in the PAMINA and the TRANSIMS micro-simulations,

turn-count statistics were included. Figure 4.24 shows a comparison between the PAMINA run 11

and one of the TRANSIMS runs for the same time-period between 8:00 am and 9:00 am. Figure 4.25

depicts a comparison between PAMINA and actual counts. We make the following observations:

(i) The counts are very similar considering the short time interval of 15 [min] and the high level

of disaggregation.

(ii) Generally, the turn counts in TRANSIMS are higher that those in PAMINA, which is due to

the larger number of vehicles in the study-area at this time of day: approximately 12,500 for

TRANSIMS and approximately 11,000 for PAMINA.

(iii) Compared to the actual data, the PAMINA counts are slightly biased towards left and right

turns. This e�ect is caused by the lack of penalty for turns: in contrast to real-world drivers

who generally dislike making too many turns in a route, the route planner chooses the shortest

path independent of geometric considerations.

(iv) PAMINA counts are closer to TRANSIMS than to the actual counts. This fact insinuates

that both micro-simulations have the same problem, which may have been caused by the

common input data. Both route-sets are based upon the same O-D matrix, which is known

to be from a di�erent year (1990) than the street network (1996). The O-D matrix did not yet

include a Northern extension a major freeway. As a result, the simulations show insu�cient

counts in North-South direction for the two right-most arterials.

TRANSIMS will implement node penalties (represented by additional waiting time at nodes) in the

near future [77]. Also, for the next test-bed for Portland (Oregon) the O-D matrix, the network,

and any actual counts will be from the same year. These improvements combined are expected to

match turn counts to the actual values.
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Figure 4.24: Comparison with TRANSIMS: turn counts for selected intersections | Grey

bars at intersections denote PAMINA approach counts. Short black bars denote higher counts for TRANSIMS. White

inverted bars denote lower counts for TRANSIMS.
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Figure 4.25: Comparison with reality: turn counts for selected intersections | Grey bars at

intersections denote PAMINA turn counts. Short black bars denote higher counts in reality. White inverted bars denote

lower counts in reality.



Chapter 5

Online Routing

In chapter 4 we used micro-simulation to provide feedback for the dynamic tra�c assignment. This

process yielded a route-set which is expected to resemble reality within the margins de�ned by the

�delity of the micro-simulation. Results from simulations of this type can be used to forecast the

impact of infrastructure changes on the environment or sub-populations. They may also serve as

decision criteria for city and tra�c planners to determine which alternative is the most appropriate.

The time-scale on which these decisions are made lie in the range of several years. Consequently, for

these computations the tra�c network can be regarded as static with a few sets for representative

scenarios (e.g. week day vs. weekend or holiday).

In this chapter we will consider a completely di�erent time-scale. Instead of changing routes

through an external router which is activated after the simulation has been executed, we will start

modifying routes while a vehicle is traveling through the network. Therefore, the time interval at

which the tra�c network is monitored, will be reduced to minutes. As before, the Dallas - Fort

Worth study-area will serve as the test-bed.

5.1 Introduction

With increasing tra�c volume and likelihood of congestion, the design of intelligent tra�c infor-

mation and guidance systems has become more and more popular. In the following section we

outline the main obstacles. We will use the term subscribers for all drivers with access to a route

guidance system and the term non-subscribers for all others. The fraction of subscribers will be

called market saturation.

Emmerink et al investigated the inuence of online information in non-recurrent congestion [27]

and recurrent congestion [28] for a small arti�cial corridor network. They �nd that in both cases

online information has a positive overall bene�t for all market saturations. The maximum bene�t

is usually reached at medium saturations | around 50%.

94
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Esser [31] uses the core

1

network of the city of Duisburg (Germany) for routing experiments with

en-route data. He �nds a similar result: the average speed of all vehicles in the network is a

monotonously increasing function of the market saturations. For some of the scenarios, however,

the maximum bene�t is already reached at 60%.

In practice, most intelligent route guidance systems have not passed their experimental test phase.

This is due to a set of technical and algorithmic problems which have only been partially solved.

Among others these are:

Collecting state information The �rst step of a functioning guidance system must be to retrieve

an up-to-date representation of the current state for the whole tra�c network in question.

The classical approach is to install local counting devices that provide information about

vehicle count and, optionally, about vehicle velocity. The availability of these devices is very

heterogeneous and their installation is expensive. Of course, in order to ensure that the

system works e�ciently, a certain spatial saturation has to be reached which would require

an enormous investment by either public institutions or commercial investors. Counting

devices have a built-in inaccuracy which may inuence prediction quality (see [30]). Also,

most devices are speed-insensitive and therefore only provide good information if the ow has

not broken down yet: It is impossible to di�erentiate between an empty street and one with

stalled vehicles in it. In this case, cameras may be used to decide which case applies.

Once installed, the collected data has to be transferred to control centers. Because permanent

data connections are rarely available, data is collected and stored locally. This is why counting

loops are often used to provide long-term surveys of tra�c ow only. In this case the expensive

hardware is useless for online applications. Only if state information can easily be collected

in short intervals (no more than 15 minutes), can it be integrated into an online system.

Lately, it has been suggested to use data gathered by vehicles actively participating in the

tra�c ow. These oating probe vehicles (see [30]) have on-board storage devices to collect

information about location and average-velocity which are later transmitted to a control

center. As with the permanently installed counting devices, a certain density of probes is

necessary to provide a consistent view of the network. In addition, it is questionable whether

on-board devices will be readily accepted, because it will be di�cult for providers to guarantee

that information about location and time-of-travel will be handled anonymously. Of course,

this is less a technical question than one of consumer acceptance. State information need not

necessarily contain any information relating to the vehicle identity. The question is whether

consumers will trust their data to be safe. Critics claim that it is possible to reconstruct

complete trip itineraries from partial information and associate these with individual drivers.

Note that the two approaches are not mutually exclusive. Both can contribute to an overall

view of the tra�c state. It will be interesting to compare and validate results in areas when

information from both sources are available.

Providing alternative routes At this point we assume that we actually have a consistent view

of the tra�c network, no matter how this information was retrieved. We distinguish between

1

The network consisted 107 intersections and 280 links.
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two major types of tra�c guidance. (a) The collected information is made available to drivers

who have bought or leased online tra�c information systems. It can be used to graphically

enhance maps of the tra�c network by adding color-coded information on congestion or

travel-times on links. The important aspect is that in this case, the driver himself still makes

the decision whether to deviate or stick to the current route. No hints are given about a

potential detour. That is why this approach is called passive: The information system only

provides information about the current state but nothing else. (b) The second approach uses

state information to actively suggest alternative routes to the driver. This can be done locally,

in which case an on-board computer determines an alternative route, or by the provider of

the online information.

With increasing market saturation the impact of vehicles using alternative routes will result

in a non-negligible feedback on the tra�c network. More speci�cally, re-routed vehicles may

create new congestion in areas which would have been free otherwise. This latter case raises

the issue of fairness (see below), which is concerned with the extent to which orchestrated

re-routing for subscribers of the system has negative e�ects on all non-subscribers.

One approach to reduce the e�ect of an \online" feedback | such as guiding a large fraction

of vehicles through a detour | is to use shortest-path algorithms that deliver reasonable

alternative routes in addition to the actual shortest path. Finding these routes proves to

be more di�cult than one would expect because conventional k-shortest-path algorithms

(i.e. [36]) deliver results which were obtained by replacing an increasing number of links

by slightly longer alternatives. Transferred onto the real tra�c network, this corresponds

to artifacts such as changing from the highway to a parallel frontage road at one exit and

reversing the process at the next ramp. Thus, one possible criterion for the term \reasonable"

[94, 113] in this context could be that the alternative route overlaps very little with the

shortest route, but is almost cost-equivalent (see [51]). Using shortest-path algorithms that

start looking for a shortest path at both the origin and the destination may be a �rst step,

although they usually do not work in tra�c networks with time-dependent link weights.

Communication Another related technical problem is how to transfer state-information (or route-

alternatives) from, and to, vehicles. One solution is to install a network of beacons that

communicate with passing vehicles over a short range (e.g. several meters) and relay their

data to control centers. Although this approach is technically feasible and already in use in

one test-bed (Berlin), it requires a completely new (and additional) network of hardware-

transmitters.

Another approach is to use cellular telephones network as the communication network. In

the long run this will de�nitely be more cost-e�ective than new hardware, since the cellular

telephone market is expanding at a high rate. The amount of information that needs to be

transmitted is small compared to conventional voice information. Current systems work at

data rates of several

2

kilobits per second which means that complete alternative routes could

be transferred in a fraction of a second. Since most cellular phone networks use digital control

2

The GSM network works at 9.6 [KBit/sec].
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signals, a data connection can be established within a few seconds. Therefore, a complete

transaction of communicating the current location, the current route, and requesting a new

route could be done in a few seconds. Depending on the response time of the server providing

the route alternatives, the connection can be held (quick response time) or terminated (long

response time). In the latter case the on-board device would be called back by the server as

soon as an alternative route has been computed.

Acceptance Alternative routes that are suggested by the provider are based upon the current

tra�c state or estimates for the future state respectively. Both are subject to errors that may

reduce the quality of an alternative considerably, or in the worst case make it worse than

the original route. Depending on the likelihood of these negative experiences with a route

guidance system, the acceptance will decrease. This will be especially disadvantageous to

the provider if the service is payed on a pay-per-use basis. One way to regain the trust of

subscribers would be to o�er a service which is based on a pay-per-success basis. In this case

the provider has to determine whether he can provide su�ciently good suggestions to break

even. The Dallas - Fort Worth test-bed allows for a �rst measure of the commercial success

of a simple online routing system.

The route suggestion itself is also subject to acceptance by the drivers. A quick detour may

be shorter but very hard to follow if it leads through areas that the driver is not familiar with.

Other drivers may object to left-turns, going through residential areas, using free-way ramps

too often, and so on. It should be clear that in order to provide a good route the driver's

preferences must be taken into consideration.

Fairness Providing additional information to a subset of drivers may improve their average travel-

time in recurrent and/or non-recurrent congestion. The commercial success of the service

provider will be determined by the predictability and quality of the route-alternatives. If

the service only had an impact on the drivers subscribing to it, the relationship tp the re-

maining drivers would completely decouple. Unfortunately, there is feedback (be it positive

or negative) because re-routing will a�ect the whole eet of drivers. When the impact is

mainly negative | for example if the average travel-time of the non-subscribers increases

measurably | legislation may demand that a certain penalty be paid to compensate for the

increased social costs imposed on non-subscribers. If the average travel-time even increases

for all drivers, the social costs may be accompanied by additional environmental costs.

On the other hand, a centralized and orchestrated route guidance system may be the only

way to move the tra�c situation closer to a system optimum instead of the current user

equilibrium. It is well known, however, that system optimal solutions usually require a

certain fraction of the drivers to take routes which are longer than those they have used

previously. Within the context of commercial service providers, it seems unrealistic to expect

subscribers to pay for service which worsens their situation. But even if the average travel-

time increases, the predictability | which is often regarded as a desirable feature a route

[131] | will improve. Unfortunately, pushing tra�c closer to optimality unveils its chaotic

nature [84].
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vehicle

detour destination

source detour source destination

current link

last valid link

planning horizon

Figure 5.1: Geometry of an online-detour | For a vehicle the head of its current link serves as

the source node for the detour search. The last node that is still within the planning horizon serves as detour

destination.

One of the topics of the remaining part of this chapter is how to estimate the impact on

subscribers and non-subscribers as well as on both groups combined.

5.2 Re-routing algorithm

So far we have used static route-sets for all simulations with PAMINA. Each vehicle followed

its route-plan independent of the current road conditions until it reached its destination. This

approach, in conjunction with the discreteness of the tra�c model, resulted in grid-locks which

could not be resolved (see Section 3.4.2). Using iterative re-planning, grid-lock no longer occurred

in later route-sets.

The next question is, how to enhance the static approach by using an online re-planning scheme.

\Online" in this context does not mean that we feed real-world online state information (e.g.

data provided by online monitoring devices such as counting loops or video cameras) into the re-

planner. Instead, we use the micro-simulation to provide state information. The starting point for

each experiment is a route-set obtained from the iterative re-planning process. This serves as a

speci�c \test day" for the tra�c in the simulation area. Without online re-planning we test the

quality of this route-set by executing the route-set several times using di�erent random seeds. For

each route through the study-area we obtain average trip-times and their respective variances.

5.2.1 Criteria triggering re-routing

Using the static case as the base-case, we now allow a certain subset of drivers to access online

information during the trip through the study-area. The fraction of drivers equipped with these

intelligent routing devices is called the market saturation m

o�l

. Every t

update

o�l

time-step (in the range

of 120 : : : 240 seconds) all equipped vehicles are monitored. For each vehicle the following steps are

executed (see Figure 5.1):

� Starting with the current link (ending in the potential detour source node), the vehicle adds
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up the current travel-times t

trav

o�l

for all future links in its route-plan until it reaches the �rst

link whose head is further

3

away from the detour source node than the given planning horizon

h

o�l

. For all remaining links the travel-times contained in the original route are used. The

sum of all individual travel-times yields a new arrival time T

arr

o�l

.

Note that, here, the \historic" information of the old route is used to allow some reasonable

comparison. The situation that we are investigating can be compared to the daily commute to

work for which each driver memorizes his previous trip time. Of course, there are other ways

to include older information. In a day-to-day simulation of the street network of Nordrhein-

Westfalen (NRW) [79], however, it was shown that there is no signi�cant di�erence between

using only the previous trip or additional older trips (in this case with an exponentially

decreasing weight).

� The driver compares his scheduled arrival time T

arr

sched

contained in its original route-plan to

the new estimate T

arr

o�l

provided by the online router. If the relative estimated delay

d

o�l

=

T

arr

o�l

� T

arr

sched

t

trav

sched

is greater than a given threshold d

min

o�l

the driver will request an alternative route from the

online router. Otherwise (and in the case that the vehicle is only two links away from the

destination) no action is taken.

� The online router starts a shortest-path search using the detour source node and the to-

node of the last valid link as detour destination node, which is the last node of the current

route within the planning horizon. The router computes a new estimated travel-time for the

re-routed portion which is combined with the links from the detour destination node to the

ultimate route destination node, yielding a re-routed arrival time T

arr

r�r

. The relative re-routing

delay (negative values denote an improvement) is given as

d

r�r

=

T

arr

r�r

� T

arr

o�l

t

trav

sched

:

� If d

r�r

is smaller than a given threshold d

min

r�r

the vehicle uses the new alternative route. This

is counted as a re-routing event. The router will increment a counter associated with the

vehicle to keep track of how may times the vehicle has been re-routed. The estimates for all

links up to the detour destination node are replaced by those of the new route. All estimates

after that (including the arrival time) are corrected by adding the time di�erence T

arr

r�r

�T

arr

sched

to the old values.

5.2.2 Shortest-path algorithm and edge weights

During the simulation, each link j (with length L

j

, number of sites S

j

, and free speed v

free

j

) is

monitored every t

sample

time-steps for vehicles. The number N

j

of vehicles found on link j and the

3

Manhattan-distance
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sum of their velocities V

sum

j

are accumulated over the update interval of t

update

o�l

time-steps. At the

end of each interval the travel-time t

trav

i

is computed as follows:

t

trav

j

=

8

>

<

>

:

N

j

L

j

=V

sum

j

if V

sum

j

> 0

L

j

=v

min

if V

j

= 0 and N

j

=S

j

> %

thresh

L

j

=v

free

j

otherwise.

For a given source S, destination D, and departure time T

depart

the router executes the following

steps: If S is the same as the previous source S

prev

and T

depart

= T

depart

prev

we re-use the shortest-path

tree of the previous computation. Otherwise, we compute a new shortest-path tree using a simple

label-setting Dijkstra [19] algorithm. The travel-times t

trav

i

are used as link weights. Only those

nodes that are in a Manhattan distance of h

o�l

to S are considered for labeling. The algorithm

stops only after all reachable nodes have been labeled, even if D has already been labeled. This

allows the router to re-use the shortest path tree several times, since the requests are processed

link by link. All vehicles on the same link share at least the �rst node (source) of their potential

detour. The label at D is used as the travel-time from S to D.

Note that this algorithm works with time-independent edge-weights. Within the context of the test-

bed this can well be justi�ed, since the average travel-time of all routes is about 10 : : : 12 minutes.

For re-routing in larger areas, one would have to include travel-times obtained from sources other

than current measurements. In this case it is still possible to compute the shortest paths in an

e�cient manner on a parallel computer (see e.g. [20, 107]).

5.3 Scenarios

5.3.1 Re-routing parameters

In Section 5.2.1 we have described four parameters that will be used to inuence the behavior of

the online re-planning. These are:

Market Saturation The impact of the market saturationm will be important for the marketabil-

ity of online re-routing devices. Potential customers will only accept devices that provide a

certain guarantee of success. If fees for route alternatives are only due when they were suc-

cessful (e.g. resulting in a travel-time shorter than some prede�ned average) providers will

be interested in estimating what minimum success-rate would be necessary to break even.

Planning Horizon The planning horizon h

o�l

(maximum spatial look-ahead) of the detour search

has an important impact on the run-time behavior of the shortest-path algorithm. In a tra�c

map, intersections are homogeneously distributed over the map area. The number of nodes

to be labeled within a given distance h

o�l

from the source node scales with O(h

2

o�l

). For this

reason, the value should be kept as small as possible. On the other hand, increasing the value

may enable the algorithm to �nd more useful alternatives.
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Figure 5.2: Update of travel-times | The curves show the running average of the relative delay for

di�erent runs. While run 13 uses scheduled arrival times based upon old link travel-time feedback �les, run 17

re-computes all estimates using the latest run.

Note that a small h

o�l

not only reduces the number of labeled nodes considerably, it also

decouples re-planning regions in a distributed route guidance system (see e.g. [107]).

Update Interval The update interval for the link travel-times T

update

o�l

will represent a trade-o�

between a quick response to increasing demand on links (short intervals), on the one hand,

and good link travel-times statistics on the other hand. As far as computational e�ciency is

concerned, shorter intervals also increase the amount of communication between re-planning

regions. This is directly transferable to the hardware requirements of a real-world route

guidance system: the faster the update, the higher the required bandwidth.

Accumulated Re-planning Fraction The result of the iterative re-planning process is a self-

consistent route-set which exhibits little uctuation with respect to additional re-planning.

The question is if reality is actually that close to a possible equilibrium. In case it is not,

route-sets obtained from earlier iterations may be more similar to a real-world con�guration

of route-choices. Therefore, we will use route-sets from di�erent iteration runs as base-cases

for our re-planning experiments.

5.3.2 Simulation setup

For each experiment we run the simulation �ve times with no online re-planning (m = 0) to obtain

data for the base-case. Each run uses a di�erent set of random seeds. Afterwards we run a set of

�ve runs for each parameter combination that we investigate.
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In contrast to the iteration runs presented in Chapter 4 we changed the behavior of the planner

RP2 slightly. In order to provide current travel-time estimates for all drivers, all routes, even

those that are not re-planned, are updated to reect the travel-times of the previous simulation

run. Otherwise, the incentive to request a new route-plan would be considerably reduced for

early iterations, since most of the drivers still have estimates dating back to iterations when grid-

locks were very common. Figure 5.2 shows relative delays for runs 13 and 17 which use the same

parameter combination but di�er in the travel-time estimates. Run 17 shows time-independent

behavior whereas run 13 starts out by underestimating travel-times but considerably overestimates

travel-times later in the simulation. We chose the parameter combination

� planning horizon h = 5 [km] (corresponding to half the diameter of the study-area),

� update interval T

update

o�l

= 120 [sec], and t

sample

= 10 [sec],

� accumulated re-planning fraction f

acc

= 1:0, and

� v

min

j

= 0:01 � v

free

j

,

� d

min

o�l

= d

min

r�r

= 0:1, and %

thresh

= 0:05

to be the reference for all our comparisons. These and most other combinations were sampled in

intervals of 10%, for market saturations between 0 and 90%.

5.3.3 Recurrent congestion

The �rst case that we investigate is that of recurrent congestion. The route-set that is used for

the simulation contains a con�guration of drivers that have chosen their routes over a re-planning

period of 20 iterations. Each driver has chosen his route based on a snap-shot of the previous

iteration. Since the micro-simulation is non-deterministic, the tra�c conditions in areas with large

variance may be completely di�erent from the current run. Therefore, there is a certain chance

that choosing a di�erent route will improve the trip-time of a driver although, on the average, the

current route is already a good choice. Online routing comes into play when the current snap-shot

is used instead of an outdated one.

Frequency of service

In the following section we present simulation results describing the di�erent criteria of the decision-

making process outlined in Section 5.2.1. First we take a look at the frequency with which the online

service is queried by subscribers. The left-hand side of Figure 5.3 shows the number of requests

that the router has to handle for di�erent market saturations m

o�l

= 0:1; 0:2; 0:3; 0:4; 0:5. These

counts have been accumulated in time-bins of 15 minutes and normalized to a market saturation of

1.0. The curves exhibit little di�erence with respect to the market saturation. As a reference, we

have included the number of potential requests which can be obtained from the number of vehicles
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Figure 5.3: Requests and re-routing events (iteration 20)| Left: the number of potential requests

derived from the number of vehicles in the system, and the actual number of requests scaled to a market saturation of

100%. Right: the number of successful re-routing events with at least d

min

r�r

relative improvement.

in the study-area. Potential requests are equivalent to requesting a travel-time estimate for the

remaining portion of a trip. One can see that only half of all drivers actually issue requests, since

the other half has obtained an estimate that di�ers less than d

min

o

l

from its \memorized" travel-time

of the previous run.

The right-hand side of the same �gure shows the number of requests that are answered by returning

a new route. Note that, because the detour has to be better by at least d

r�r

, about half of the

vehicles do not receive a new route. The scaled number of re-routing events is also relatively

independent of the market saturation except for the peak period at 8:30 am, during which the

higher saturations yield a smaller chance of being re-routed (about 20% decrease of m

o�l

= 0:5

over m

0�l

= 0:1). Remember that, at this point, being re-routed does not necessarily result in a

shorter trip-time | it only corresponds to a shorter projected trip-time. Figure 5.4 shows the rate

with which requests are answered by a returning a new route-plan. The curve exhibits a peak at

about 8:30 am. This is the time when the average-velocity of routes into the study-area reaches its

minimum (see Figures 4.22 or 4.23).

There is another peak at 5:30 am which may be an artifact due to inaccurate travel-time information:

Travel-time data is only available for a link if vehicles currently use it. Otherwise, the travel-time

is computed (as in the planner) to be length divided by free speed (see 3.3.1) resulting in longer

travel-times for sparsely populated links. Since the time-bin for the external router is 15 minutes

instead of 2-4 minutes for the online re-planning, the probability of a link being empty is larger in

the online case. In these cases the online re-router may �nd detours on links with underestimated

trip-times. Later, as the study-area �lls up, most links have travel-times from actual vehicles, so

that the artifact disappears.
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Figure 5.4: Success fraction (iteration 20) | Fraction of re-routing events that were successfully

handled by returning a new route. The peak at 5:30 am is due to insu�cient link travel-time statistics at that time

of day.

Also, the small number of vehicles during early simulation hours causes higher uctuations of

the travel-time estimates eventually resulting in an increased likelihood for re-routing. A similar

increase of uctuations was reported in [51] for the link velocities between 5 am and 7 am.

Quality of service

When subscribers are o�ered a route alternative they expect an improvement in travel-time relative

to the original route they would have taken. Unfortunately, due to the uncertainty of state infor-

mation and prediction, the alternative may not live up to its promise. Therefore, it is important

to have some quantitative measure about how well the re-routing process works.

First we will look at the overall bene�ts for subscribers compared to non-subscribers. We compute

the average travel-time of all subscribers and non-subscribers and average them over time-bins (with

respect to their insertion time) of 15 minutes. In Figure 5.5 the average travel-time is plotted for

di�erent market saturations. Prior to 10:30 am the curves for non-subscribers are higher than the

respective curve for non-subscribers. The travel-time di�erence decreases as the market saturation

increases.

Figure 5.6 shows this result more clearly. During the peak of the rush hour, a ten percent market

saturation yields an average improvement of 200 seconds which corresponds to 28%! Of course,

this statistic does not prove the overall bene�t of such a service because the improvement could

be strongly biased towards a small subset of subscribers enjoying extreme reductions in travel-time

while others have no bene�t or are delayed. Still, Figure 5.6 may be important for marketing
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depict the insertions into the study-area per 15 minute interval and the number of vehicles in the study-area. Note

that there are hardly any insertions after 10:00 am.

purposes since it clearly shows that the system works well if restricted to a small clientele. One

surprising result is that the advantage of re-routing vanishes after 10:30 am. Figure 5.7 shows the

number of insertions per 15 minutes and the number of vehicles in the study-area for the case of

zero market saturation. It becomes obvious that, although there are still thousands of vehicles in

the study-area, the number of new insertions drastically drops at 10:00 am and is insigni�cant by

10:30 am. Therefore, the e�ect we see is due to the fact the route-set does not extend far enough

beyond the peak of the rush hour. The reduced number of vehicles has a negative e�ect on the

statistics. Hence, all results after 10:00 am have to be interpreted with caution.

It is interesting to take a look at the distribution of relative delays upon arrival at the destination.

From the �ve runs that were executed for market saturation m = 0:2 we gathered the subscribers

into three groups (see Figure 5.8): those who were never re-routed (rr = 0), those who were re-

routed one to �ve times (rr = 1), and those who were re-routed six to ten times (rr = 2). Trips with

more than ten re-routing events were not considered because of their insu�ciently small counts.

The curve for rr = 0 is mainly a normal distribution centered around zero delay since this subset

does not di�er from non-subscribers at all except for the fact that they \know" they cannot receive

better alternative routes. The curve for rr = 1 that also peaks at zero delay, is biased towards

negative delays. Speci�cally, there are more subscribers arriving earlier than non-subscribers. The

e�ect becomes even more obvious for curve rr = 2, where the peak has actually shifted towards

negative delays. This means that within our re-routing approach it is worth while to be re-routed

more than once. Figure 5.9 gives an overview about several market saturations m. Here we have

omitted the rr = 0 curves. It is interesting to see that the curves for rr = 1 are practically

independent of m (although the fraction of positive delays slightly increases with m). The real
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Figure 5.10: Di�erence of travel-time of all to base-case (iteration 20) | The curves

show the impact of the guidance system on all drivers. Negative values denote an overall improvement.

di�erence occurs for rr = 2 where there is a continuous shift to negative delays for decreasing

market saturation.

Fairness

Traditionally, tra�c control systems have never been restricted to a subset of tra�c participants.

For example, radio transmitted information about congestion is available to practically the whole

population | although it is very rarely used (see [119]). Tra�c control measures, such as actuated

tra�c lights or variable tra�c signs, a�ect the whole stream of vehicles without discrimination.

Individual route guidance is a service that would only be available, at least during its market

introduction, to a subset of all drivers. Tra�c infrastructure, however, is still largely funded by

public taxes. It is therefore logical that the bene�ts of a tra�c network should be equally be

spread among all participants. Note that there may be a regional competition of interests to accept

only desired tra�c (such as shoppers or delivery trucks) but to reject other tra�c that only passes

through.

In this context, a tra�c control system that does not a�ect non-subscribers negatively may be much

easier to sell or enforce than one that is known to be biased. Therefore, we have investigated the

extent to which the re-routing a�ects the overall tra�c condition, compared to the base-case with

a market saturation of zero. Figure 5.10 depicts the di�erence in average travel-times of all drivers

with respect to the base case. Small saturations m = 0:1 : : : 0:3 have hardly any e�ect for early

hours and late hours with a short disadvantageous phase between 9:00 am and 9:30 am. Higher

saturations m

o�l

= 0:4 : : : 0:5 have a stronger e�ect both positively until 9:45 am, and negatively
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Figure 5.11: Executed routes and accumulative average travel-time (iteration 20) | Both

the number of executed routes (left) and the average travel-time (right) exhibit an improvement for market saturations

up to 40%. Above that the improvement is negligible, but the variance increases considerably.

Figure 5.12: Screen-shot of re-routed vehicles for m

o�l

= 0:3 | The screen-shot shows subscribers

(open circles) that have been re-routed to avoid the jam in East-West direction. The jam mostly consists of non-subscribers

(solid circles). Most subscribers end up on a street North of the jam. The network as a whole is used more e�ciently.

afterwards. The curves show a rather large dip after 10:00 am. As mentioned before, this portion

of the curve has little signi�cance because of the less-balanced vehicle eet during later hours.

If the travel-times of individuals decrease, it is to be expected that the overall throughput of the

tra�c network will improve. Figure 5.11 shows the number of vehicles that have successfully reached

their destinations between 5:00 am and 11:57 am. For market saturations up to m = 0:4 we see a

slight increase in vehicles. The variance between the �ve runs of each saturation is relatively small.
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Figure 5.12 shows the advantageous e�ect of re-routing: in case of tra�c jams, subscribers start

using links that have previously been empty.

For higher saturations the variance becomes considerably larger and the average number decreases

again. This is due to additional tra�c jams caused by feedback from re-routing.

The right-hand side of Figure 5.11 shows the accumulative travel-time until noon divided by the

number of vehicles that have reached their destination. There is improvement up to a saturation

of m = 0:6, although for m = 0:5 and m = 0:6 the variance has already increased. For saturations

over m = 0:6 the average travel-time rises again with a large increase of variance: approximately

12% for m = 0:8. Compared to the base-case, the situation is worse by about 10%.

In contrast to the results reported by Emmerink and Esser, we �nd that there is no overall positive

e�ect from online routing for all market saturations in our simulation. There may be several causes:

i) The network sizes used in [28, 31] are much smaller than the ones used in PAMINA. Small

networks may exhibit e�ects which di�er qualitatively from larger networks because of addi-

tional symmetries. Also, any e�ects are \magni�ed" because of the small number of available

routes.

ii) Both groups used arti�cial loading curves for the network. In the Dallas case-study an actual

rush-hour is modelled with route-plans retrieved from a realistic origin-destination matrix. It

seems questionable if arti�cial demand curves can be used as a base for real-world scenarios.

iii) At least in the case of [28], the process which is used for the iterative dynamic assignment

yields a constant average travel-time after 100 iterations. This implies a tra�c system that

is much less inuenced by stochastic variations than the simulation in PAMINA.

Other parameter combinations

In the following we will change two major parameters of the re-routing process. In order to quantify

the e�ects caused by these changes, it is important to look at the intrinsic variance of the system

for runs with identical parameter combinations but di�erent random seeds. We used the original

set of base-case runs as reference and compute the respective di�erence of average travel-times to

the sets of bases cases of the two parameter combinations. The base-cases are equivalent because,

for market saturation m

o�l

= 0, the online re-planning parameters do not play a role. The results

are depicted in Figure 5.13. Before 8:30 am the intrinsic variance is about 20 [sec], between 8:30 am

and 9:30 am about 50 [sec], and about 100 [sec] afterwards.

Planning horizon

The planning horizon h

o�l

, which is the maximum look-ahead of the shortest-path algorithm, is one

of the parameters inuencing the quality of the re-routing service. Figure 5.14 depicts the di�erence

of average travel-time between h

o�l

= 10 [km] and h

o�l

= 5 [km]. For small market saturations
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Figure 5.13: Intrinsic variance of average travel-time (iteration 20)| Di�erence between

simulations for identical parameter combinations but di�erent random seeds.
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Figure 5.15: Fairness of h

o�l

= 10[km] (iteration 20) | Di�erence of average travel-time of

non-subscribers compared to the base-case. Negative values denote an improvement.

(m = 0:1 : : : 0:3), increasing the horizon has a bene�cial e�ect. For higher market saturations the

e�ect is reversed. Note that for m = 0:5 subscribers have actually higher travel-times at around

9:30 am.

The fairness for h

o�l

= 10 [km] can be seen in Figure 5.15. In contrast to h

o�l

= 5 [km] all

market saturations yield positive (at 8:30 am) or indi�erent results until 10:30 am. In this case the

decreased e�ciency for subscribers at high saturations turns out to be bene�cial for all drivers.

Update interval

The next modi�cation increased the update-time t

update

o�l

from 120 [sec] to 240 [sec]. Figure 5.16

shows that the situation for subscribers becomes worse (between 7:45 am and 9:00 am) for all

market saturations or does not change at all. This is consistent with the �ndings of Esser who

reports a maximal positive e�ect of online-line routing for t

update

o�l

= 100 [sec]. The fairness for

non-subscribers is di�cult to tell for early simulation hours before 10:00 am (see 5.17) since the

di�erence in average travel-times oscillates strongly. Still, small saturation rates (m = 0:1) have a

slightly positive inuence.

Accumulative re-planning fraction

After 20 iterations using random route re-planning selection, the fraction of plans that have never

been re-planned is about 35% percent. As a consequence, 35% of all subscribers have never been

re-planned. It is reasonable to assume that a good fraction of these drivers actually do not use
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Figure 5.18: Requests and re-routing events (iteration 30) | Left: the number of potential

requests derived from the number of vehicles in the system, and the actual number of requests scaled to a market

saturation of 100%. Right: the number of successful re-routing events with at least d

min

r�r

relative improvement.

the online routing service in order to adapt to current stochastic tra�c conditions because their

route-plan is completely outdated. We have also seen that further iteration generally improves

the tra�c situation in the tra�c area by distributing tra�c more homogeneously. At the same

time, by �lling up links that have not been used yet, the iteration process withdraws alternative

routes from the online-routing. Therefore, it is to be expected that the number of re-routing events

decreases. Figure 5.18 shows this result for iteration 30. Compared to iteration 20 (see Figure 5.3)

the peak request rate drops from 60,000 to 40,000. The number of successful re-routing events drops

even more drastically from 27,000 to about 14,000. Surprisingly, for m

o�l

= 0:1 : : : 0:2 the quality

of individual re-routing events improves. Figure 5.19 shows well-de�ned peaks at negative delays

for these market saturations. Higher saturations show the same behavior as in iteration 20 (see

Figure 5.8). At the same time the bene�t of being re-routed decreases considerably. Figure 5.20

shows the di�erence between the average travel-times of subscribers and non-subscribers. The best

absolute improvement for m

o�l

= 0:1 is also about 35 seconds compared to about 200 seconds for

iteration 20 (see Figure 5.6). The bene�t for higher saturations drops to about 5 seconds which

is negligible. As for the fairness to non-subscribers, the online re-planning shows only minimal

impact. Compared to iteration 20 (see Figure 5.10) the peaks (both positive and negative) are

generally smaller.

Figure 5.22 shows the overall impact of re-routing on the number of executed routes and the

average travel-time. As before in iteration 20 (see Figure 5.11) the situation improves slightly

with increasing market saturation. In this case, however, the best results are already reached for

m

o�l

= 0:3. Above that level of saturation, the variance increases noticeably. As mentioned before,

the route con�guration for this iteration is better adapted to the tra�c pattern: the number of

executed routes has risen from 249,000 (20) to 256,000 (30), while the average travel-time has
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Figure 5.19: Quality of re-routing suggestions (iteration 30) | As with iteration 20 the

curves for rr = 1 are basically independent of the market saturation. For rr = 2 the bene�t decreases with growing

market saturation.
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Figure 5.20: Di�erence of average travel-times of subscribers to non-subscribers (it-

eration 30) | Negative values denote shorter travel-times for subscribers.
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Figure 5.21: Fairness (iteration 30) | Di�erence of average travel-times of non-subscribers to base-

case. Negative values denote an improvement.
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Figure 5.22: Executed routes and accumulative average travel-time (iteration 30) | Both

the number of executed routes (left) and the average travel-time (right) exhibit an improvement for market saturations

up to 30%. Above that level the improvement is negligible, but the variance increases considerably.
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Figure 5.23: Requests and re-routing events (iteration 20, weak congestion)| Left: number

of potential requests derived from the number of vehicles in the system, and the actual number of requests scaled to a

market saturation of 100%. Right: number of successful re-routing events with at least d

min

r�r

relative improvement.

dropped from 710 seconds (20) to about 540 seconds (30). Note that for m

o�l

= 0:5 there is an

especially bad run with only 247,500 executed routes. The same run also causes the non-vanishing

number of requests after 10:30 am in Figure 5.18.

5.3.4 Non-recurrent congestion

For all experiments conducted so far, tra�c conditions were only subject to stochastic variation.

The actual link travel-times could be expected to match those which were used by the external

router. Now, we introduce a disturbance into the system that could not be foreseen by the router:

for one of the busiest links we will reduce the maximum speed from 4 [sites/sec] to 1 [site/sec]

between 8:00 am and 9:00 am. Afterwards, the old value will be restored. We do this in order to

model a temporary weak congestion that may have been caused by an accident or a construction

site. We also use the term weak congestion for this scenario.

In a second setup we used a list of the most busiest links inside the study-area to determine ten

links which were subjected to the same decrease in maximum speed as described above. Note that

we chose the links to be su�ciently far apart to amplify the impact of the disturbance. The location

of the links can be seen in Figure 4.21.

Weak congestion

From the non-vanishing number of potential requests in Figure 5.23 we conclude that, with the

additional disturbance, the system has a certain chance of developing a grid-lock. Otherwise, the
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Figure 5.24: Executed routes and accumulative average travel-time (iteration 20, weak

congestion) | Already a market saturation of m

o�l

= 0:1 dissolves the grid-locks caused by weak congestion.

number of requests does not di�er noticeably from the undisturbed case. The number of successful

re-routing events is even smaller compared to Figure 5.3. Figure 5.24 shows that already online

re-routing with m

o�l

= 0:1 prevents the system from grid-locking: the variance in the number of

executed routes drops from about 18,000 to practically zero. This bene�cial e�ect is maintained

up to 60% saturation. Above that level the variances start increasing again.

Heavy congestion

In the case of heavy congestion the number of requests is considerably higher than in any previous

case. During the disturbance the number of requests peak at 170,000 per 15 minutes for 50%

(normalized to 100%). For market saturations of 10% and 20% the system grid-locks again. In this

case all runs are a�ected. Increasing the saturation above 20% resolves the grid-locks. Note that

the number of successful re-routing events shows a stronger dependency on market saturation than

normal: for a saturation of 10% there are 35,000 events per 15 minutes during the disturbance inter-

val, for 50% there are up to 60,000. Figure 5.26 shows the bene�cial e�ect of re-routing up to high

market saturations: for m

o�l

= 0 : : : 0:2 the system grid-locks slightly with approximately 215,000

executed routes. For m

o�l

= 0:3 : : : 0:5 the situation improves, but occasionally there are still

grid-locks. For m

o�l

= 0:6 : : : 0:7 the number of routes has stabilized at around 240,000. The same

improvement can be stated for the average travel-time: starting at around 1400 seconds without

online re-routing, it decreases to about 900 seconds for 70%.
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Figure 5.25: Requests and re-routing events (iteration 20, heavy congestion) | Left: the

number of potential requests derived from the number of vehicles in the system, and the actual number of requests

scaled to a market saturation of 100%. Right: the number of successful re-routing events with at least d

min

r�r

relative

improvement.
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Figure 5.26: Executed routes and accumulative average travel-time (iteration 20, heavy

congestion)| Aminimummarket saturation of 30% is required to dissolve the grid-locks caused by heavy congestion.



Chapter 6

Parallel Computing

Although the performance of CPUs has increased tremendously over the last two decades, it is

becoming more and more evident that technology is approaching the limits imposed by the laws of

physics. The velocity of electronic signals is limited by the speed of light, so that the number of

switching operations has a natural upper bound given by the area of the chip and its circumference.

As a consequence, the cycle times of high-end CPUs (such as the CRAY series, see [35]) have only

decreased by a factor of 2 over the last two decades

1

. One approach to increase the performance

of a computer is to exploit the parallelism of algorithms by using several CPUs at the same time

(i.e. [35, 37, 47, 59, 70, 71]). Ideally, p CPUs can reduce the computing time by a factor of p. While

this factor is never reached, good parallel implementations on adequate hardware come very close.

In this chapter, we will outline some basic concepts of parallel computing as it is performed on

today's state-of-the-art computers. We start by introducing some major programming models, with

a focus on distributed memory. In the second part, we describe the problem of load-balancing which

proves to be decisive for the e�ciency of distributed memory implementations. We conclude this

chapter by computing an estimate for the maximally obtainable e�ciency of the tra�c simulation

PAMINA. Moreover, we will present benchmark results for runs of PAMINA II and PAMINA III.

6.1 Introduction

The reference for all considerations of parallel execution time is the execution time of the fastest

known sequential algorithm running on one CPN

2

. Let T

seq

be the time to solve a given problem

on one CPN and T

par

(p) be the time required on a parallel computer using p CPNs of the same

type. The e�ciency e(p) of a parallel application running on p CPNs is de�ned as

1

Cheaper CPUs such as those used in personal computers have increased by several orders of magnitude. This

was, however, just a development to catch up with high-end CPUs.

2

From now on, we will use the term CPN (short for computational node) instead of CPU for the smallest unit of

our parallel computer.

120
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e(p) =

T

seq

pT

par

(p)

:

The e�ciency measures the fraction of the available computational power that is used for the

application itself. It is the goal of any application to have e = 1, independent of the size of

the parallel computer. Of course, in reality, the e�ciency is below the optimal value. It quickly

decreases with the number of CPNs.

Assuming that the time required on one CPN can be split into a constant part T

s

= const inde-

pendent of the number of CPNs, and a \perfectly" parallel part T

p

(p) = T

p

(1)=p we obtain:

e(p) =

T

seq

pT

s

+ T

p

:

As p increases, the e�ciency decreases to zero. This corresponds to Amdahl's Law which says that

the e�ciency of a parallel application is basically given by its sequential component.

The product of the number of CPNs and the e�ciency

S(p) = e(p)p

is called the speedup of the parallel implementation. Ideally it scales linearly with p (assuming that

e(p) = const). In real-world implementations, the necessity to synchronize intermediate results

forces CPNs to \wait" for one another and to exchange information. Both the additional idle-time

and the communication are the main reasons why e(p) is often below one. We will give an estimate

of e(p) for the implementation of PAMINA II in Section 6.4.

6.1.1 Comparison of parallel algorithms

It is possible to formulate algorithms for which the number P of desirable CPNs depends on the

problem size n itself. If the sequential algorithm requires T

seq

(n) steps to solve the problem, and

the parallel version requires T

par

(n) steps, one prerequisite for a good parallel implementation is to

demand

T

seq

(n) =2 O(T

par

(n)):

That is to say that the parallel algorithm is de�nitely faster than the sequential counterpart by

more than a constant factor.

Often, it is possible to increase computational performance by demanding a prohibitively large

number of CPNs (i.e. P (n) 2 N

3

or even worse). In order to capture the costs inicted by

hardware, it is advisable to consider the product of runtime and the number of used CPN as

additional criterion. In particular, a parallel algorithm is called optimal, if T (n) 2 O(log

k

n) for

k � 1 and

P (n)T

par

(n) = T

seq

(n):
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Figure 6.1: Simple communication networks

A good overview of parallel algorithms can be found in [47]. Of course, most of these considerations

are purely theoretical, since the maximum number of simultaneously available CPNs is always

limited by the current state of computer development.

6.2 Computers and networks

Most of the currently available computer systems can be described using a graph with vertices

representing CPNs and edges representing communication links between the CPNs (see Figure 6.1).

Some additional vertices may be required to serve as multiplexers between communication links.

Communication consists of transferring data packages (with a size of several bytes to a few kilobytes)

from one CPN to another using connecting links. The performance of communication links is

basically given by three values:

� The latency is the time required to initiate the communication. It is due to the underlying

hardware, the software protocol, and the average rate of collisions on the network if there is

simultaneous communication.

� The bandwidth de�nes what amount of data can be transmitted in one time-unit, once the

communication has been initiated. It is usually given in units of Megabits per second.

� If a message exceeds a maximum size (also called packet size) it has to be split into several

smaller packets. The time required to re-initiate the communication for the new package

corresponds to another type of latency. It is usually smaller than the initial latency.

A table of measurements for these values on common computer architectures can be found in [96].

On its way through a communication network the package has to go through a series of commu-

nication links. The maximum number of \hops" over all possible paths is called the diameter of

the network. Large diameters are one of the main reasons for long latencies, while overloaded

communication links are usually the cause for low bandwidths.
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The simplest model of a network is a bus where all CPNs share the same communication link.

This implementation is often found in local area networks based upon Ethernet or FDDI. In a bus

system there is no notion of local communication since every communication possibly a�ects all

other participants in a network. The diameter is constant for a bus system.

In a tree communication network the CPNs represent the leaves of a tree organized in layers. The

inner vertices of the tree are multiplexers handling the communication between the layers. If p is

the number of CPNs, the diameter of the tree is O(log p) which is less e�cient for bus networks.

The tree network, however, allows simultaneous communication within sub-trees. Increasing the

bandwidth of the links with increasing distance from the leaves allows bandwidth-preserving global

communication. This con�guration is often called a fat tree.

Another communication network that used to be very common is the two dimensional grid (2D-

grid) in which each CPN has communication links to its four neighbors. The diameter of the

network is O(

p

p) which is even less e�cient than a tree structure. However, a 2D-grid can be

extended very easily by adding new rows or columns to the grid. At least one computer model

(Intel Paragon) used the so-called worm hole routing to reduce the latency caused by the large

diameter: a communication route (like a worm through the grid) was selected before the actual

start of the communication. Afterwards all data was transmitted as though there were only one

link between sender and receiver.

There are other more complex versions of communications networks (see [59, 71]) such as the

Buttery, Shu�e-Exchange, DeBruijn, and hyper cube networks. They all have diameter O(logn).

6.2.1 Distributed memory

Probably, the most straightforward way to build a parallel computer is to use conventional hardware:

in the simplest case, CPNs are connected by standard communication networks. A workstation

cluster is such a simple case (see [96]). Since each CPN has its own local memory (and no direct

access to memory located on other CPNs) this con�guration is called a distributed memory system

(see Figure 6.2). The reason why many known distributed memory systems still use exotic hardware

(Intel Paragon, IBM PS2) is due to the underlying high performance communication network.

The interface between the hardware level and the application level is realized by message passing

libraries. The best known representatives are PVM (= Parallel Virtual Machine, see [100, 124])

and MPI (=Message Passing Interface, see [34]). Their main objective is to provide function calls

for sending and receiving messages between CPNs. Moreover, they usually o�er complex functions

for data aggregation, disaggregation, and synchronization. The programming model is often called

MIMD (=Multiple Instruction, Multiple Data) because each CPN can have an individual program

and local data. In practice, however, it is common to generate only one executable (for all CPNs)

that specializes speci�c parts of the program depending on its local data con�guration.
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Figure 6.2: Programming paradigms | The original version of this �gure was taken from [96].

6.2.2 Other programming paradigms

Besides message passing there are several other programming models, some of which will be outlined

next.

Shared memory

Recently, the shared memory architecture has gained a considerable market share. It is usually im-

plemented in workstations with several (two to 64) CPN sharing the same address space. Although

each processor may have a certain portion of the main memory locally and temporarily assigned

to it, every other processor can access any other memory as though it were local

3

. The local mem-

ory is not necessarily continuous, but rather fragmented with a constant minimum fragment size.

Non-local accesses are performed through a common bus connecting all processor units.

Write-conicts are resolved without collision as long as they do not a�ect overlapping memory in

the same fragment. For these cases the operating system supplies low-level routines that enable

algorithms to serialize access to sensitive data-structures (see [96]). A concurrent read is usually

permitted resulting in a CREW (Concurrent Read Exclusive Write) memory access model.

The major advantage of a shared address space is that algorithms only require small structural

changes from their sequential counterparts. The programmer only has to look for possible collisions

of the CREW model and serialize the program ow locally (i.e. [11]). However, this approach

does not automatically guarantee good e�ciencies for a large number of CPNs since it does not

address data locality. As in the distributed memory model, data access that is non-local generates

3

So, Shared Address Space and Distributed Address Space actually describe the paradigms much better
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communication (hidden from the programmer) on the underlying bus-system. Nevertheless, since

the number of CPNs is usually small and the bus-systems are increasingly powerful, linear speedups

are often possible with little e�ort.

Virtual shared memory

A variation of the shared memory paradigm is the virtual shared memory system. The CPNs share

the same address space as with shared memory, but the memory is physically distributed over all

CPNs. Using a library that emulates the global address space, any distributed memory machine can

be used as a virtual shared memory machine. Pfenning [96] implemented a simple tra�c simulation

model using a virtual shared memory approach.

Vector computers

Vector computers are among the oldest parallel computer systems. They were used to compute the

same series of instructions for a large number of data items. Applications are usually restricted to

those that exhibit very regular data structures such as grid-oriented simulation models and matrix

operations. For these implementations, vector computers still o�er the fastest implementations.

Vector computers are not well suited for tra�c simulation problem because of the highly irregular

graph structure of realistic tra�c networks.

High level language support

In addition to the low-level programming paradigms presented above there is growing support for

higher-level program development. Auto-parallelizing compilers are able to detect simple paral-

lelisms that are implicitly or explicitly coded in conventional Fortran or C(++) source-code. The

compilers usually make use of threads (see i.e. [126]) to split the current single line execution into

multiple threads of execution which are assigned to several CPNs on shared memory computers.

Also, there are extensions to high-level programming languages like HPF (=High Performance

Fortran) or CC++ which supply additional compiler directives or language elements that can be

used to identify and exploit the parallelism hidden in a program.

The operating system feature remote procedure call can be found on almost all Unix-platforms.

It behaves like a local procedure call, only that all parameters to the procedure are coded and

transferred to a remote CPN. The result of the computation is also encoded and sent back to the

originating CPN. The programming language SR [92], for example, supports remote procedure calls

as a language component.
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6.3 Load-balancing

One of the main objectives of parallel computing is to accept a problem instance, split it into several

smaller sub-units and assign those sub-problems to CPNs for parallel execution. At certain intervals,

but at least once at the end of the execution phase, the sub-units have to exchange information to

be able to continue or to produce a common result. These events are called synchronization points.

The ratio of the time that CPNs can work independently to the time that they have to wait for

synchronization is decisive for parallel e�ciency. For reasons of clarity, we di�erentiate between

two extreme cases of dependencies between sub-units.

� In the �rst case, the sub-units (tasks) are almost independent and the waiting time for

synchronization is short relative to the execution time. For a given number of tasks n and

CPNs p (with n� p) the main objective is to distribute tasks in such a way that none of the

CPNs are idle. Note that the individual runtime of each task may vary considerably. This is

usually done by maintaining a short queue of pending tasks for each CPN.

B

�

ohm and Speckenmeyer [12, 13] have shown that a fast SAT-solver can be implemented

by re-distributing tasks generated by the internal branching algorithm at certain intervals.

With their parallelization scheme (called PLB for Precomputation-based Load-Balancing)

they obtained e�ciencies above 0.95 for a two-dimensional communication network up to 256

CPNs and e�ciencies above 0.85 for a linear communication network of the same maximum

size. Meisgen [68] applied the PLB algorithm to the parallel simulation of biological aging.

� If the execution time is very short and the data dependencies are strong, it is impossible to

\queue up" tasks. The goal is to make the execution time of all tasks as equal as possible.

Also, it does not make sense to have more parallel tasks than available CPNs. Therefore,

the problem must be carefully split to yield exactly p tasks. Knecht and Kohring [54] used a

parallel implementation for the simulation of granular materials with short-range interactions

caused by inelastic collisions. In this implementation, depending on the problem size, up

to 1000 synchronizations per second (on 128 CPNs) were necessary rendering the problem

extremely susceptible to load imbalances.

Tra�c simulation belongs to the second group because the rule-set of the CA-model has to be eval-

uated for each time-step. Depending on the real-time-ratio, which determines how may simulation

seconds are computed in one wall-clock second, there may be tens of synchronizations per second.

From the examples mentioned above, it should be clear that the balancing of load is the key

technique to achieve good e�ciencies on parallel systems. It is useful to di�erentiate the load-

balancing schemes according to the time-scale at which they take place:

� If the load-balancing only takes place before the start of the application, it is called static.

This requires that the execution-time of all tasks are known beforehand and that they do not

change during runtime. In some cases (i.e. on regular grids) the distribution of load may be

so trivial that it can be done by inspection, that is by examining the given problem geometry.
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� If the load changes during runtime, it may be desirable to change the allocation of tasks to the

CPNs. If the change is slow, the extra-time required for balancing compared to the execution

time itself is insigni�cant. This load balancing scheme is called quasi-dynamic or adiabatic.

� If the load changes very so quickly that constant allocation corrections are required, it is nec-

essary to consider the trade-o� between letting the application run out-of-balance or spending

time on �nding a better allocation. In this case the load balancing is called truly dynamic.

In the following section we concentrate on static and quasi-dynamic balancing because they are

relevant for the implementations of PAMINA II and PAMINA III.

For a given problem let T

1

: : : T

N

be the tasks with execution time t

i

. Assigning subsets of tasks

to CPNs we will result in dependencies between CPNs that require communication. Let c

ij

be the

time task T

i

and T

j

will spend on communication if they end up on di�erent CPNs. Further, let

L

k

be the accumulative load generated by all tasks on CPN P

k

computed as

L

k

=

X

j2P

k

l

j

+

X

i2P

k

;j =2P

k

c

ij

If L

min

is the minimum, and L

max

the maximum of all L

k

, one way to de�ne an optimal distribution

is to demand

L

max

� L

min

!

= minimal:

6.3.1 Static balancing

We start out with the simplest allocation method: assign T

i

to CPN P

j

for j = imodp. This

approach is called cyclic mapping. It works reasonably well if n� p and the c

ij

(� l

i

) are negligible.

It almost equivalent to random mapping where assignment is done randomly. Random mapping

may even work better if the execution times of the tasks are spatially correlated.

In some cases additional structural information is available. Since most real-world problems are

de�ned in a two or three dimensional space, the tasks T

i

are often associated with locations p

i

.

Moreover, many real-world dependencies are known to be local or at least short-range so that the

c

ij

are only non-zero if the corresponding locations p

i

and p

j

are close. The recursive orthogonal

bisection splits all available locations into smaller and smaller regions by using the X and Y (and Z)

coordinates. It yields good results if the locations are homogeneously distributed and the c

ij

are of

comparable value. Note that due to the interval property of the coordinates the resulting domains

are convex. PAMINA uses the orthogonal bisection for the initial distribution of the street network

(see A.1.3).

Even more specialized is the recursive spectral bisection [98] which transfers the graph bisection

into a matrix eigenvalue problem. In contrast to simple bisection, recursive spectral bisection also

works satisfactorily for heterogeneously distributed locations and/or communication dependencies

c

ij

. It is, however, considerably more demanding computationally because of the required matrix

eigenvalue solution. An example can be found in [35].
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A number of libraries (see i.e. [44, 99]) are available that implement one or several of these algo-

rithms.

6.3.2 Quasi-dynamic balancing

The quasi-dynamic load-balancing during runtime is commonly split into two major phases (see

[62]):

decision phase During this phase each CPN has to decide if load is to be transferred to another

CPN. The decision can be based upon (a) local data which is locally available from the CPNs

neighbors in the communication network, or (b) global data, which was retrieved using global

communication. Usually, either the receiver or the sender makes this decision in order to

avoid collisions. However, combined decisions are possible.

migration phase In the second phase, the CPN accepts or transfers load (or both). As before with

the decision phase, it is useful to di�erentiate between local migration to or from neighbors

and global migration to other CPNs in the network.

The eight di�erent quasi-dynamic load balancing strategies are described by the code SDSM

d

where S must be replaces by the scope Local or Global and d must be replaced by the decision

strategy sender, receiver, or sr for combined decision. PAMINA uses a LDLM

s

strategy, which

corresponds to a Local Decision Local Migration method where the sender decides how much load

is being transferred.

Local methods

LDLM methods are also called di�usion methods because the migration of load along load gradients

strongly resembles the ow of heat causes by temperature gradients. Their main advantage is that

all communication is kept local which completely decouples load balancing in di�erent regions of

the network. Xu and Lau [135] have found an optimal set of di�usion parameters for the di�usion

method in a regular mesh network.

If the load is well equilibrated locally, small disturbances can trigger load transfer which may

be reversed during the next migration. This ping-pong e�ect would cause additional, undesired

communication. A common remedy for this e�ect is to impose a minimum threshold for any

migration. Unfortunately, this may result in a load gradient across the communication network.

This is why local methods are often enhanced by global corrections.

Another question of the migration phase is what tasks are to transferred to neighboring CPN. In

case of a local migration strategy the selection of tasks takes place along the boundary between

CPNs. In principle, any task along the boundary can be chosen. It proves to be advantageous,

however, to chose those tasks that are furthest away from the center of the domain to be transferred

�rst. This way, the sending CPN \peels" o� its excess load at the surface (see [24]). Also, when
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selecting tasks, special care should be taken that those are chosen which have least dependencies

with other tasks remaining on the CPN (see [52]).

Global methods

As we have seen, load gradients are very common with local load balancing methods. One way out

of this dilemma is to use global information. The most straightforward approach is to use a static

load balancing strategy and apply it to the current con�guration of execution times of all tasks. If

afterwards all tasks are simply reassigned, \dynamic" load-balancing is equivalent to iterated static

load-balancing.

The aforementioned PLB [13] algorithm uses a pre�x computation in the graph of the CPN topology

to determine the optimal shift of load. Note that all transfers are done local. As a consequence,

some CPNs may have to transmit and accept load during a balancing step. A similar global di�usion

method was suggested by Horton [45].

6.4 Scaling behavior of the tra�c simulation

Nagel and Schleicher [86] have investigated the parallel e�ciency of tra�c, with periodic boundary

conditions, on several computer platforms. In this section we will consider whole tra�c networks.

Technically, T

seq

is the time needed to run the simulation on a single-CPN machine with the fastest

available sequential algorithm. Due to the domain composition we assume for tra�c simulation

T

seq

to be T

par

(1). That is, we use the same algorithm in both cases. Furthermore, we do not

associate T (p) with the runtime of the whole simulation, but with the time needed to execute a

single time-step.

Since we have a time-step driven simulation with implicit synchronization before each sub-time-step,

T (p) is dominated by the slowest CPN with execution time T

max

(p). Thus, for further investigation

we de�ne the e�ciency as

e(p) =

T (1)

pT

max

(p)

=

T (1)

p(T

s;max

(p) + T

c

(p))

:

In the following section we will show how to compute T

max

(p) as a sum of communication time

T

c

(p) and simulation time T

s;max

(p) which is derived from parameters depending on the tra�c map,

the computer hardware, and some simulation characteristics.

Map parameters

In principal, the street network can be of any shape and any topological structure. In order to

estimate the communication imposed by boundaries, however, it is useful to make the following

assumptions about the graph G = (N;E) associated with the street network:
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Figure 6.3: Decomposition of map area into tiles of equal size

� The graph is shaped like a square. We use a normalized area of 1.

� The density of vertices (or rather super-vertices; see below) is homogeneous.

� The graph is planar.

Suppose we have a map of n vertices and e edges, where each vertex represents an intersection

or ramp of the street network and each edge the street segment between two vertices. We count

both street segments (directions) as one edge. Further we identify N super-vertices by removing all

vertices of degree two from the network. The resulting E super-edges connect super-vertices which

used to be connected by a path of normal edges.

We use the sum length L of all edges as the size of a map. The sequential simulation time T (1)

is assumed to be proportional to L which is true for the cellular automata implementation within

a certain range of average edge lengths. During the initial distribution onto p CPNs, the whole

network is split into p sub-nets of almost equal size. Let us �rst estimate how many neighbors one

CPN has on the average. To do this, imagine a square area (see Figure 6.3), representing the map,

split into 2

i

small tiles of equal size. The number of relationships N

n

(p) between neighboring tiles

is equivalent to the number of common borders with other tiles: two for each of the four corner

tiles, three for each of the 4(

p

p � 2) edge tiles, and four for each of the (

p

p � 2)

2

internal tiles.

Note that N

n

(p) is only integer for even i. The average number of neighbors n

n

(p) = N

n

(p)=p turns

out to be

n

n

(p) =

8 + 12(

p

p� 2) + 4(

p

p� 2)

2

p

2 O(1):

The function is depicted on the left-hand side of Figure 6.4: after a steep increase for small numbers

of CPNs it slowly approaches the value four of an in�nitively large system of CPNs in which all
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Figure 6.4: Average number of neighbors per CPN and overall number of boundaries |

The functions n

n

(p) (left) and B(p) (right) are plotted along with some results from actual orthogonal bisections.

tiles are internal. Note that, although the actual number of neighbors is slightly higher, n

n

(p) is

independent of the map size.

Number of boundary edges

The number of neighbors N

n

(p) and the width l

b

(p) =

q

1=p of a border (see Figure 6.3) can be

used to deduce the length of the complete borderline between CPNs: L(p) = N(p)l

b

(p). Since we

assume the graph to be homogeneous and planar, we obtain an super-edge density of

%

E

=

p

Na

deg(G)

2

=

p

N

2E

2N

=

aE

p

N

along any cut through the map area, where deg(G) is the average degree of a vertex and a is a

geometrical correction factor. The number of inter-CPN boundary edges B(p) is equal to the length

of the borderline times the super-edge density:

B(p) = %

E

L(p) =

aE

p

N

N

n

(p)l

b

(p) 2 O(

p

p):

We used the Dallas data to derive the correction factor a � 2

�1=2

. On the right-hand side of

Figure 6.4 B(p) has been plotted for three di�erent maps along with results from actual orthogonal

bisections. We de�ne the number of boundary edges per CPN as b(p) = B(p)=p 2 O(p

�1=2

).
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Granularity

Ideally, all sub-nets of the street network are of equal size resulting in equal load on all CPNs. Tech-

nically, this is not possible since the tra�c network does not allow an arbitrarily �ne decomposition

of its elements. A simple assumption is that the atomic size of the street network is proportional

to the relative size e of an average street edge with respect to the whole network. We de�ne the

optimal granularity as g

opt

= 1=e. This optimum, of course, can hardly be achieved. In particular,

most dynamic load balancing strategies de�ne a threshold for the minimum load di�erence between

neighboring CPNs, which has to be exceeded before any transfer is done. Thus, we also consider a

constant granularity g

const

.

The value g refers to neighboring CPNs. In a network of p CPNs, the granularity between the

d(p) =

p

p layers of d CPNs each from one side of the network to the other will result in a load

imbalance depending with the number of layers. In order to estimate the load di�erence between

the least and most heavily loaded CPN, we introduce a runtime correction f

grad

(p) for the most

heavily loaded CPN. For a perfect system without granularity f

grad

is zero. For a optimally balanced

system f

grad

is constant. Moreover, we consider the cases of a linear and an exponential gradient:

f

grad

(p) =

8

>

>

>

<

>

>

>

:

0 no granularity

1

2

g 2 O(1) optimal gradient

1

2

d(p)g 2 O(

p

p) linear gradient

1

2

((1 + g)

d(p)

� 1) 2 O(2

p

p

) exponential gradient

6.4.1 Hardware parameters

Hardware parameters describe the performance of the computer hardware with respect to both

computation and communication.

Computational performance

Using the sequential time T (1) required to execute one time-step and the size of the map L, we

de�ne the performance value P = T (1)=L. For a high-�delity implementation, T (1) depends slightly

on the actual density of vehicle in the system (see Figure 6.5). In this case all measurements have

to be carried out at the same overall density (e.g. % = 0:1).

Communication performance

As far as communication performance is concerned, we distinguish between the application-level (a-

l) and low-level (l-l) performance. The application level performance refers to the time T

a�l

c1

required

to transfer one boundary to a neighbor and the corresponding latency T

a�l

cl

, explicitly including the

time for retrieving and packing data on the sending CPN as well as the time for unpacking and storing

data on the receiving CPN. The achievable application-level bandwidth per CPN is considerably
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Figure 6.5: Dependence of performance on vehicle density | The performance of the CA-

model only varies by a factor 2 in the density range 0:003 : : : 0:3.

lower than the theoretical sustained bandwidth of the underlying communication network which

we assume to be c

net

bytes per second. Because the amount of simultaneous communication may

actually exceed the physical bandwidth, we also include the low-level communication time T

l�l

c1

.

Communication network topology

Since we use domain decomposition as the parallelization scheme, we have to map the resulting

tra�c sub-networks (tiles) onto the CPNs of the underlying communication network. For a bus-

system this is trivial since all communication paths between CPNs overlap and are, therefore,

equivalent. The drawback to this approach is that communication is completely serialized. We will

see that the overall communication volume increases with the number of CPNs used in the computer

network. The resulting e�ect is also known as competition for bandwidth (see [35]). Communication

often proves to be the bottleneck of the simulation in a bus-topology.

For two-dimensional grids (with

p

p rows of

p

p CPN each) we assume that the mapping can be

done such that communication between a tra�c sub-network (tile) and its neighbors will only result

in serialized communication between its associated CPN and other CPNs within a certain constant

distance

4

. Any other communication outside that radius is to be carried out in parallel.

We neglect the issue of mapping logical subnets onto physical CPNs handling the subnets. Monien

4

The distance between two CPNs in the grid topology is de�ned as the number of inter-CPN connections a

message has to cross while traveling from sender to receiver.
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[71, 69] and others [108] have investigated this problem in depth.

6.4.2 Simulation parameters

Since the tra�c simulation is time-step driven, the simulation parameters mainly describe the

coarse structure of a time-step, which is divided into n

sub

sub-time-steps. We take administrative

overhead into account by de�ning a factor f

over

denoting what fraction of the run time is wasted

on administration when the normal number of sub-time-steps is assumed to be n

sub;0

. If T (1) is

the time to execute with n

sub;0

sub-steps on one CPN then the actual optimal

5

execution time with

n

sub

sub-steps will be

T

s

(p) =

1

p

�

1 +

n

sub

� n

sub;0

n

sub;0

f

over

�

T (1) =

1

p

�

1 + f

adm

(n

sub

)

�

T (1) 2 O(p

�1

):

Two other simulation parameters are: the average length b

size

of a single boundary in bytes, and

the corresponding message header length per neighbor b

header

also in bytes. b

size

will depend on

the density of vehicles in the street network as well as the resolution of the vehicle representation.

Also, if vehicles are routed, the length of the route-plan may be a decisive factor. b

header

can be

regarded as constant.

6.4.3 Combining components

Now that we have derived all parameters, we can combine them to estimate the execution time

T (p) for one time-step on p CPNs. The execution time T

s;max

(p) for simulation on the slowest CPN

amounts to the optimal execution time T

s

(p) corrected by the maximum load di�erence f

grad

(p):

T

s;max

=

1

p

(1 + f

adm

(n

sub

) + f

grad

(p))T (1):

During the simulation, each sub-time-step will require a complete exchange of boundaries between

neighboring CPNs. Let us �rst handle the application-level boundary communication. Assuming

that communication of each CPN to its n

n

(p) neighbors is sequential, latency will require n

n

(p)T

cl

and transmission b(p)T

c1

at application-level.

So far the time required for communication has been regarded as independent of the communication

network saturation. This is only reasonable for peak communication rates below the performance of

the network. Let us �rst de�ne the total amount of simultaneous communication C

bpt

during a sub-

time-step. At this point we have to di�erentiate between the bus topology and the two-dimensional

grid topology

C

bpt

(p) =

(

N

n

(p)b

header

+ B(p)b

size

= O(

p

p) bus

n

n

(p) ( n

n

(p)b

header

+ b(p)b

size

) = O(1 + p

�1=2

) 2-D grid

5

At this point, we still neglect the load imbalance
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The additional factor n

n

(p) for the two-dimensional grid is included to estimate the simultaneous

communication between nearest neighbors.

Assuming a maximum bandwidth of c

bps

of the communication network, the new lower bound for

the low-level transmission time of all boundaries is C

bpt

(p)=c

net

. We completely neglect latency

for low-level communication. The total communication time is the sum of both low-level and

application-level communication

T

c

(p) = n

n

(p)T

cl

+ b(p)T

c1

+

C

bpt

(p)

c

net

:

It proves to be practical to replace the absolute values of T

cl

, T

c

(p), T

c1

, and c

net

by their relative

values t

cl

= T

cl

=T (1), t

c

(p) = T

c

(p)=T (1), t

c1

= T

cl

=T (1), C

net

= T (1)c

net

with respect to the

sequential execution time T (1). Using this convention, the e�ciency turns out to be

e(p) =

�

n

n

(p)t

cl

| {z }

latency

+ b(p)t

c1

+

C

bpt

(p)

C

net

| {z }

bandwidth

+

1

p

�

1 + f

adm(n

sub

)

| {z }

overhead

+ f

grad

(p)

| {z }

gradient

�

�

�1

6.4.4 Measuring parameters

In this section we describe how to to obtain the hardware parameters T

cl

, T

c1

, and b

size

. In contrast

to the preceding section, we now have to to select a speci�c implementation of the simulation. We

will use PAMINA II as simulation and an excerpt of the NRW network as test-bed.

Boundary size

The average boundary size depends on the density of vehicles in the system and its resolution [106].

A boundary may be \empty" or contain as many vehicles as there are lanes on the corresponding

inter-CPN street segment. A low resolution boundary only contains site information of the cellular

automata, whereas a high resolution boundary contains site and vehicle information.

For the test case we measured boundary size at a low density (% = 0:01), at a medium density

(% = 0:05), and a high density (% = 0:1), close to the ow-maximum of the underlying tra�c model.

The measurements were carried out as follows: From one CPN a varying number (1 through 11) of

complete boundary sets

6

were transferred to a neighboring CPN for both low resolution and high

resolution. We measured the total amount of bytes as reported by the underlying communication

library (PVM). The results from the curves in Figure 6.6 are summarized in table 6.1. High

resolution boundaries show a stronger density-dependency than low resolution boundaries. For

the e�ciency and runtime estimates of Section 6.4.5 we used the time-step average values as the

arithmetic mean of both resolutions.

6

A set of boundaries are all boundaries transferred between two neighboring CPNs before each sub-time-step
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Figure 6.6: Boundary communication volume | left: low resolution, right: high resolution

density low resolution high resolution time-step average

[byte/boundary] [byte/boundary] [byte/boundary]

0.01 66 77 72

0.05 88 148 118

0.10 106 215 160

Table 6.1: Boundary communication volume

The value b

header

for the header size of a boundary transmission could not be obtained from the

measurements since the intersections with the y-axis were sometimes negative. Therefore, we

estimated a size of b

header

= 64[byte].

High-level communication bandwidth and latency

The latency and bandwidth of boundary communication is dominated by the application-level

encoding and decoding routines, if the number of sender CPN is small and the load of the commu-

nication network is low.

As above, for the boundary volume, we used two CPNs between which we exchanged a varying

number of boundary sets. In this case, however, we measured the time required to encode the

boundary set, transmit the set, decode the set on the remote CPN, and receive a con�rmation

message from the remote CPN. Thus, the intersection with the y-axis will be at twice the latency.

The results from the curves in Figure 6.7 are summarized in table 6.2. Note that the measurements

for the SGI Challenger, although very well de�ned with the lower bound transmission rates, show

many particularly bad exceptions. This is mainly due to the fact that the SGI Challenger was

always loaded with about two jobs per CPN, while the SUN cluster was running idle.
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Figure 6.7: Boundary communication performance | left: low resolution, right: high resolution)

machine low resolution high resolution

latency [ms] transfer [ms] latency [ms] transfer [ms]

SGI-Challenger 2.16 0.257 2.16 0.356

Sparc-Cluster 3.52 0.543 3.77 0.688

Table 6.2: Boundary communication performance

6.4.5 Performance estimates

All curves presented in this section refer to the complete map of the German Autobahn network

(FRG). The overall vehicle density was �xed at % = 0:1. The administrative overhead per substep

was assumed to be 2.5%.

Fixed problem size for bus architecture

Figure 6.8 shows what fraction of the execution-time is spent on which part of the simulation:

� The raw simulation curve mainly represents the tra�c simulation itself, although this fraction

includes the administrative overhead for multiple sub-time-steps. It is equivalent with the

e�ciency e(p) of the simulation.

� The load gradient curve shows the loss of execution time due to the load gradient which builds

up throughout the CPN network. We assumed a exponential gradient of 0.01 per layer.

� The a-l communication curve shows the fraction spent on application-level communication

with latency and bandwidth combined.
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Figure 6.8: E�ciency for bus topology | The raw simulation fraction corresponds to the e�ency of the

simulation. Both �gures contain points which were retrieved from the benchmarks of Section 6.5. Note that the actual

e�ciency is always lower than the theoretical e�ciency.

� Finally, the l-l communication curve shows the additional fraction of time spent on low-level

communication due to the saturation of the underlying network through non-simultaneous

communication.

The left-hand side of Figure 6.8 depicts the estimate for the SGI Challenger. We assumed the

average sustained communication bandwidth on the internal bus system to be 5 [MB/s]. The e�-

ciency is slightly above 0.9 for 16 CPNs, which is the con�guration used in [106]. At approximately

150 CPNs the e�ciency drops below 0.5, because the time spent on low-level communication quickly

exceeds the raw simulation time itself. This is the major drawback of the bus-topology.

The right-hand side of Figure 6.8 reveals the same qualitative shape of the e�ciency and low-level

communication curves as those for the SGI Challenger. The crossover, however, is already reached

at 30 CPNs, due to the lower sustained communication bandwidth of the Ethernet which was

assumed to be 1.0 [MB/s].

Fixed problem size with software implementation tuning

Figure 6.9 depicts the obtainable real-time ratio if the software implementation were better or worse

than in the current version, respectively. They refer to the Sparc-5 cluster with Ethernet. The

following improvements were tested:

� the application-level communication rate t

c1

is only a �fth,

� the application-level latency t

cl

is only a �fth,
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Figure 6.9: Other software implementations | Left: Better software implementations (in this or-

der): current state, smaller latency, faster coding, smaller boundaries, only one sub time-step. Right: Worse software

implementations: current state, longer latency, slower coding, larger boundaries, three sub time-steps.

� the average boundary size b

size

is only a �fth,

� the number of sub-time-steps is reduced to one.

Accordingly, the following disadvantageous modi�cations were tested:

� the application-level communication rate t

c1

is �ve time as high,

� the application-level latency t

cl

is �ve times as high,

� the average boundary size b

size

is �ve times as high,

� the number of sub-time-steps is increased to three.

As could have been expected, the average boundary size b

size

has the most impact, since low-level

communication proved to be the main bottleneck on the bus-topology. Nevertheless, no matter

how many CPNs are available, it remains di�cult to push performance beyond a real-time ratio of

3.

Fixed problem size with hardware tuning

After the software modi�cations, we now look at hardware modi�cations. The left-hand side of

Figure 6.10 depicts the estimates for the following improvements:
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Figure 6.10: Performance improvement through hardware tuning | Improvements (in this

order): current state, 2-D communication topology, higher CPU-performance, higher net bandwidth, higher CPU-

performance in conjunction with higher net bandwidth. Right right-hand side depicts the partial fractions for a 2-D

grid network.

� use a 2-D grid topology instead of the bus topology, while keeping all other hardware param-

eters,

� the per-CPN performance is �ve times as high,

� the low-level communication bandwidth is �ve times as high,

� the low-level communication bandwidth and per-CPN performance are �ve times as high.

Obviously, only switching to another communication topology is bene�cial for large numbers of

CPNs. Other modi�cations only yield a small increase of performance. The combined improvement

of per-CPN performance and low-level communication gives a moderate speedup of factor 7 with

approximately 50 CPNs.

The right-hand side of Figure 6.10 shows the potential advantage of a 2-D grid more clearly. Since

there are no measurements for T

cl

and T

c1

available, we used those of the SPARC-5 workstation

cluster. We assumed the bandwidth of local low-level communication to be as high as with the

SGI-Challenger and the per-CPN performance to be a fourth of a SPARC-5.

From the plot it is obvious that low-level communication does not play a role in a two-dimensional

topology. With 128 CPNs, e�ciency is still at 0.85 with 15% loss equally split between dispersion

and application-level communication. Only above 1024 CPNs does the e�ciency drop below 0.5.



6.5. BENCHMARKS OF PAMINA II 141

0

5

10

15

20

25

30

0.001 0.01 0.1 1 10

re
al

-t
im

e 
ra

tio

map size in units of map FRG

1 CPN
2 CPN
8 CPN

32 CPN
128 CPN

Figure 6.11: Variable problem size on bus-topology

Variable problem size on bus-network

The last plot depicts the obtainable real-time ratio for variable problem size in units of the map

FRG. The number of super-nodes and super-vertices was scaled accordingly with ratio 403/280.

Again, we used the parameters for a cluster of Sparc-5 workstations connected through Ethernet.

Note that on a system with 128 CPUs, it is impossible to increase the real-time-ration beyond 11,

no matter how small the map may be.

6.5 Benchmarks of PAMINA II

We did measurements using di�erent street network sizes on two di�erent computer architectures,

both with PVM (see [100]) as the underlying communication library. One platform was a work-

station cluster of 12 SUN SPARC-station (5, 10, and 20 with performances between 133 and 135.5

MIPS) connected through 10 Mbit Ethernet (PVM architecture SUN4SOL2). The other platform

was a 16 processor SGI Challenger (SC 900 XI) Shared Memory system. On the latter we did not

explicitly use the shared memory architecture, but the PVM architecture SGI64 which is based on

UNIX sockets for inter-process communication.

The networks consisted either of the whole German Motorway network (FRG, see Figure 6.12) or

an excerpt thereof, namely the sub-network of the federal state Nordrhein-Westfalen (NRW). Table

B.1 gives an impression of their respective sizes.
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Germany

Nordrhein-Westfalen

Figure 6.12: Autobahn network of Germany | Left: The network comprises all Autobahn

segments and regionally some additional lower hierarchies. Right: The excerpt of the Autobahn network in the

federal state Nordrhein-Westfalen.
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Figure 6.13: Real-time ratio (German Autobahn network)
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Figure 6.14: Performance and e�ciency (German Autobahn network) | After a short

dynamic load-balancing phase of approximately 200 time-steps, the simulation reaches its maximum performance (left-

hand side) and maximum e�ciency (right-hand side).

Since the available data did not contain any information about the characteristics of street segments

or substructures of intersections, we used the defaults n

lane

= 3, v

max

= 5, and p

brake

= 0:5 on all

segments, as well as n

transfer

= 1, l

merge

= 5, l

transfer

= 200[m] � 26[site] for all intersections and

ramps. The density of background tra�c was set to % = 0:1 for measurements on the SGI and

% = 0:05 on the workstation cluster. Note that we did not actually use route-plans since �lling the

network with the help of route-plans would take considerably longer and vary the computational

load until a constant density is reached. Because performance su�ers less than 5% during vehicle

insertion activity, the measured values are also true for routed simulations. Figure 6.14 shows that

after approximately 200 time-steps of load balancing the simulation reaches its optimal performance.

This load balancing activity is due only to the imbalances caused by the initial distribution. The

work station cluster was running idle and the SGI was only loaded with jobs running at a high

nice-level. Judging from the load reported by the UNIX-utility top the performance on the SGI

may be improved by another 5% to 10% if the machine were not loaded otherwise.

6.6 Benchmarks of PAMINA III

We used a route-plan of run 11 (iteration 60) to measure the real-time-ratio of PAMINA. The

simulation ran on SUN Enterprise 2000 with 14 CPUs (250 MHz) and 2 Gigabytes of memory.

Figure 6.15 shows the results for di�erent numbers of CPUs (4, 6, 8). The maximally obtainable

ratio for PAMINA is about 22 for 8 CPUs and early simulation hours while the study-area is still

empty. The RTR drops to 18 during rush-hour at 8:30 am.
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Figure 6.15: Performance of PAMINA III | The real-time ratio is plotted for 4, 6, and 8 CPUs

on a Sparc Enterprise 2000 with 250 Mhz. The trough around 8:00 am is caused by the high vehicle density inside

the study-area.
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Figure 6.16: Execution times with external load feedback | The feedback visibly improves

the performance of the simulation. After only two iterations the execution time is almost time-independent.

6.7 Static load balancing with feedback

In PAMINA III we implemented simple external feedback for the initial static load balancing.

During run time we collect the execution time of each link and each intersection. The statistics are
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dumped to �le every 1000 time-steps. For the next iteration run the �le is fed back to the initial

load balancing algorithm. In this iteration, instead of using the link lengths as load estimate, the

actual execution times are used as distribution criterion.

To verify the impact of this approach we monitored the execution times per time-step throughout

the simulation period. Figure 6.16 depicts the results of run 17 for several iterations. For iteration 1,

the load balancer used the link lengths as criterion. The excution times were low until the �rst

grid-locks appear around 7:30 am. The execution time increased �vefold from 0.04 [sec] to 0.2 [sec].

In iteration 2 the execution time is almost independent of the simulation time. Note that due to the

equilibration the execution time for early simulation hours increased from 0.04 [sec] to 0.06 [sec],

but this e�ect is more than compensated later on.

The �gure also contains plots for later iterations (11, 20, and 40). The improvement of execution

times is mainly due to the route adaptation process: all grid-locks have disappeared and the average

vehicle density is much lower.

6.8 A remark on \super-linear" speedups

It is obvious that the parallel e�ciency has to have 1 as upper bound. Otherwise for e(p) > 1 the

product

T

emu

(p) = pT

par

(p) =

T

seq

e(p)

would be less than T

seq

. Since T

emu

(p) represents the time required for a single CPN to emulate

(by sequential execution) the p-CPN machine, this would contradict the assumption that we chose

the fastest available sequential algorithm as reference. We could simply declare the emulation the

fastest sequential algorithm solving the problem. However, in practical implementations, super-

linear speedups (with e�ciencies above one) have been detected. We would like to mention two

causes for these observations:

Hardware When measuring the runtime for an implementation, one generally assumes that a

problem with size n and complexity T (n) will cause a runtime proportional to T (n). This

disregards the fact that a larger n will increase memory-requirements. The more memory is

required, however, the more likely data is stored in \slower" memory types (including virtual

swap memory) which results in a considerably decreased performance.

Thus, for a problem of �xed size, distributing the problem onto several CPNs will also reduce

the amount of memory required on each CPN and speed up computation. In some cases this

outweighs additional computation imposed by the distribution.

Software Parallel implementations often di�er fundamentally from their sequential counterparts,

that is to say, instead of converting the sequential algorithm into a parallel version according

to some canonical rules, a completely di�erent \ansatz" is chosen. The comparison of runtimes

is only fair, then, if the results can be compared to be identical.
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Many applications, however, do not yield exact results, since they have built-in stochastic-

ity provided by random generators. Reproducing \exact" results would require any random

sequence of the single-CPN application to be reproduced on the multi-CPN machine. Obvi-

ously, this would result in an enormous coding and validation e�ort. Therefore, applications

use local random number generators hoping that results will be at least statiscally equivalent

if not identical.

Another aspect of these implementations relates to the processing of input data that is usually

stored in sequential fashion on �les. To preserve a good performance, data is read in a way that

optimizes access time often neglecting the arbitrariness of the chosen access order. Algorithms

that rely on input order may fail to reproduce the results of the sequential version.

The tra�c model presented here is subject to the problems described above although none of them

really changes the output in a noticeable way.



Chapter 7

Summary, Discussion and Outlook

In this work we have presented di�erent aspects of modern tra�c simulation. Starting with the

simulation of tra�c on a single link, we extended the model to include network tra�c. The

simulation PAMINA was used to create self-consistent route-sets which �nally served as basis for

the online re-routing experiments.

Chapter 2

The tra�c on a simulated two-lane road exhibits new characteristics compared to the simple single-

lane model. As in real-world tra�c, the passing of vehicles is a major component of driving dy-

namics. Chapter 2 contained a rule extension with three parameters de�ning a basic lane changing

process. The symmetric version treats left-to-right and right-to-left changes equally. The asym-

metric version favors the right lane over the left lane, which mimics driving guidelines on highways

in many countries. Fundamental diagrams of the ow-density relationship are similar to those

found in real-world tra�c. We also showed that the artifact of ping-pong lane-changes could be

signi�cantly reduced by introducing an additional lane-changing probability.

The look-back parameter was found to be essential for the continuity of tra�c ow. Reducing the

parameter from the usual v

max

sites to zero destroyed the laminar ow, especially in the asym-

metric case. In real-world tra�c, egoistic lane-changing maneuvers increase the risk of accidents

considerably. Therefore, though the cellular automaton does not model tra�c accidents explicitly,

the amount of ow disruption can be taken as a measure how safe a modeled tra�c state is.

Chapter 3

In Chapter 3 the two-lane model was used as a basis for the micro-simulation PAMINA. By com-

bining simple network elements to composite structures, we were able to model both highway

networks (or Autobahn networks, respectively) and city tra�c. The complete Autobahn network

147
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of Germany with 75,000 kilometers of road-way was used for a feasibility test. The initial de-

sign included a feature that became more and more important in later versions: the execution of

individual route-plans. Initially, however, the route-plans were chosen at random.

The �rst tests of PAMINA using route plans were done in the context of the TRANSIMS Dallas/Fort

Worth case-study. Both the network and the plan-set were preliminary at that point: The network

did not include any local streets; and the plansets were \unbalanced" in the sense that drivers did

not attempt to avoid congestion.

A �rst series of runs investigated the inuence of di�erent levels of �delity. We de�ned the \�delity"

of the micro-simulation by activating/deactivating speed-limits and/or tra�c lights. We measured

the impact of these parameters by comparing the actual travel-times of the vehicles to those which

were estimated by the route-planner. We found that running the simulation with activated speed-

limits and deactivated tra�c lights yielded the best similarity. While we did not expect the micro-

simulation to reproduce expected travel times in these runs, the comparison was useful to see if, in

general, the microsimulation generated faster or slower travel times than the planner; and, which

�delity level of the micro-simulation changed this, and to what degree.

During the simulation of the study-area we also encountered the phenomenon of grid-locks. These

con�gurations, occurring at high densities, consisted of vehicles that permanently prevented each

other from proceding. They were due to the fact that vehicles, so far, were not able to modify their

routes. The frequency of grid-locks depended on the �delity of the simulation: without speed-limits

and without tra�c-lights the simulation never grid-locked. The same was true for activated speed-

limits. Activating tra�c-lights had a stronger impact on the dynamics: the system grid-locked

independent from the use of speed-limits. This emphasizes the phenomenon that in city-networks

performance is mainly de�ned by throughput at intersections. Reducing the speed-limit on links

has a small e�ect since at medium and high densities the average velocity is comparable to the

speed-limit anyway.

We introduced an additional parameter q

r

for adjusting the red-phase of the tra�c-lights. By

varying the parameter between 0 and 1 we could continuously move the �delity from one, without

tra�c-lights, to one, with fully active tra�c-lights. At q

r

= 0:6 : : : 0:65 we noticed a transition:

below q

r

= 0:6, no run developed a grid-lock. Above q

r

= 0:65 all runs grid-locked. For the runs

within the interval, the grid-locking depended on the stochasticity of the simulation.

Chapter 4

Up to this point, the route-sets used for PAMINA originated from TRANSIMS. In Chapter 4 we

chose a more consistent setting: both the micro-simulation and its feedback were obtained from

the same micro-simulation PAMINA. Due to the high execution speed of PAMINA and additional

improvements of the data exchange between router and route-converter it was possible to reduce the

run-time considerably. Compared to TRANSIMS which required about 8.5 hours for one iteration

of

micro-simulation | route-converter | planner,
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PAMINA could process the computation in about 35-45 minutes. This allowed us to run extensive

experiments for route adaption with micro-simulation feedback. We de�ned three simple parameters

that were expected to have an inuence on the relaxation of iterative process: the initial route-set,

the selection scheme for routes to be re-planned, and the re-planning fraction. In our experiments,

none of the parameters actually had a strong impact on the �nal results. The independence from the

initial route-set was found to be especially advantageous, since otherwise special care would have to

be taken to start the iteration from a good route-set. We found, however, that the computational

speed of the relaxation could largely be reduced by using a linear-age

1

approach for selection.

The accumulated re-planning fraction

2

f

acc

should be at least two to allow for su�ciently stable

results, which were measured by contemplating the overall travel-time of all vehicles during the

simulation period. For a future experiment it will be interesting to conduct at least one run with

an accumulative re-planning f

acc

� 3 to see if the relaxation has really terminated and to determine

the �nal sum-travel-time.

We discovered two artifacts in the iteration process. First, the number of vehicles that were fed as

input into the micro-simulation decreased by about 10%, because the planner re-planned more and

more routes avoiding the study-area due to its highly increased link travel-times. By introducing

a level-0 correction factor c for all links outside the simulation area it was possible to reverse this

e�ect to a certain extent. In a linear correction run the number of plans was reduced by only

5%, in another one with correction

p

c the reduction was about 7.5%. This dependency gives rise

to the assumption that a factor of c

q

with i.e. q 2 [0:5; 2] can be used to arbitrarily adjust the

number of vehicles inside the study-area. It also became obvious that the level-0 correction should

only be applied after the iteration has been successfully relaxed. That way, one could avoid the

disadvantageous loss of vehicles outside the time-window which occurred during early stages of the

level-0 correction iteration.

The second artifact we observed was that up to 10,000 vehicles

3

had queued up at the boundaries of

the study-area by the end of the simulation period. This e�ect was caused by insu�cient feedback

about waiting time on feeder links to the planner. We used a correction in which the average

waiting time for entering a link was added to the travel-time on the link itself. The results were

promising: after an accumulated re-planning fraction f

acc

> 1:5, none of the iteration runs using

the correction had any vehicles waiting in queues at the end of the simulation period.

Although route-sets could be assumed to be well relaxed after su�ciently large accumulated re-

planning fractions (f

acc

> 2:0), the values for sum travel-time and the number of vehicles in the

study-area still exhibited uctuations between subsequent iterations. For a future experiment, it

will be interesting to compare the amplitude of these uctuations to the corresponding uctuations

of the link hit-rates which can be computed from the travel-time estimates provided by the planner.

Such a comparison will provide insight into how many vehicles are expected to be on a link, provided

that the link travel-times were not disturbed stochastically. As a preparation, this data has already

1

In this case, the probability of a route to be re-planned increases linearly with its age, which is the number of

iterations since its last re-planning.

2

The accumulated re-planning fraction corresponds to the sum of all individual re-planning fractions used up to

a given iteration.

3

Compared to approximately 15,000 vehicles in the study-area during rush hour.
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been collected for most iteration runs.

We continued by conducting a comparison between three micro-simulations working on the same

test-bed. The TRANSIMS micro-simulation, PAMINA, and the low-�delity simulation SCAM were

used to produce their own self-consistent route-sets. The results for the sum travel-time and the

number of vehicles matched qualitatively, but there were quantitative di�erences. SCAM yielded

results below those of PAMINA. This could easily be attributed to the fact that SCAM simulates

the whole Dallas - Forth Worth area instead of the study-area only. Tra�c jams outside the

area that cannot occur in PAMINA or TRANSIMS give rise to a lower number of vehicles inside

the area. The curves of the TRANSIMS runs were equivalent for small accumulation re-planning

fractions (f

acc

� 1:0). During the iteration (f

acc

� 3:0) the PAMINA curves eventually dropped

below TRANSIMS curves. From this we can assume that the TRANSIMS route-set was still not

su�ciently relaxed. In future comparisons one should see to it that only well-relaxed route-sets are

used.

So far the comparisons concentrated on values that had been aggregated in both space and time.

In order to investigate more detailed di�erences between the micro-simulations, we also considered

less aggregated data. First, we looked at the time-dependent travel-speed into the study-area for

both PAMINA and TRANSIMS. As before, the curves showed a qualitative similarity: starting

from high traveling speeds during early morning hours, the speed drops to a minimum during the

rush hour. Afterwards, they recover again. The absolute variation of the average speeds, however,

is larger for PAMINA than it is for TRANSIMS. At a �rst glance, this may be surprising since

the TRANSIMS runs has a smaller average vehicle density in the study-area during rush-hour

and the speed limits are computed the same way. In the future the PAMINA runs may have to

be repeated using the same deceleration probability p

d

=0.2 for the CA rule set as TRANSIMS.

Originally, p

d

= 0:3 had been selected which reduces the ability to accelerate fast. At medium and

high densities, lower p

d

have a direct impact on the sustained throughput.

This e�ect also raises the question of how to generally de�ne the speed-limit for the simulation

links. Due to the granularity of CA velocity the limit can only be adjusted in steps of approxi-

mately 24 [km/h]. Using the deceleration probability to �ne-tune the maximum speed of CA also

changes its behavior at low velocities.

In a second experiment we compared the turn counts for a selected number of intersections inside

the study-area. The similarity between the TRANSIMS run and PAMINA are satisfactory. In

general, the counts are lower for PAMINA due to the lower vehicle density in the study-area for

TRANSIMS. Both simulations, however, show considerable di�erences compared to actual tra�c

counts provided by the NCTCOG. Probable reasons follow. First, the O-D matrix which served as

input for the activity list (year 1990) did not match the street network (year 1996) that was used

for the simulation. Changes of the infrastructure can be expected to result in equivalent changes

in the O-D matrix. Second, both simulations consider insu�cient penalty for making turns at

intersections. A more realistic representation for the \inconvenience of turns" should reduce the

excess number of counts compared to reality. This will be part of future work. All in all, it must be

noted that the approaches decribed in this thesis yielded some of the �rst simulation results ever,

that were realistic enough to be compared to real-world data.
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Chapter 5

In Chapter 5 we used PAMINA with the previously computed route-sets to conduct an investigation

of online re-routing. We assumed that the eet of drivers can be split into two separate groups:

those who have access to an online route guidance system, and those without access. The fraction

of drivers with access is called market saturation, the drivers themselves are subscribers, all others

are non-subscribers.

A typical run was done as follows. At a constant update interval, all subscribers tried to estimate

their remaining travel-time. Subscribers were allowed to use the current link-travel times of all links

of remaining portion of their route-plan up to a certain planning horizon. If the current estimate

was worse (by a certain fraction) than the original estimate provided by the router, a new route

was computed using a standard shortest path Dijkstra algorithm limited to the planning horizon.

If the new route was su�ciently better than the current route the driver accepted the new one.

This was called a re-routing event.

The �rst experiment was done using a route-set with an accumulated re-planning fraction of f

acc

=

1:0. The street conditions were not changed with respect to the one that the route-set is based on.

The results are summarized as follows:

(i) During rush hour about half of all subscribers regularly try to obtain a new estimate. Half

of those receive a new (potentially better) route.

(ii) Upon arrival at their destination, subscribers have a (up to 28%) lower average travel-time

than if they had not been re-routed. The advantage decreases with increasing market satu-

ration: With a saturation of 50% the gain diminishes to about 6%. This e�ect is disadvan-

tageous to the providers of the re-routing service. On the one hand one would like to reach

high market penetration in order to use any installed hardware more cost-e�ectively. On the

other hand, it is reasonable to assume that the incentive to buy a guidance system (or to

subscribe to a service) will increase with the potential bene�t.

(iii) The quality of the re-routing process improves when a vehicle is re-routed more than once.

Quality was measured by comparing the actual arrival time of a subscriber to another run in

which the route guidance system had been switched o�. This suggests how re-routing schemes

may have to work: upon receiving a new route the driver starts into the general direction of

prescribed by the suggestion. Subsequent requests will re�ne the route as the driver proceeds

through the network.

(iv) Up to a market saturation of 40%, re-routing has a bene�cial e�ect on both subscribers and

non-subscribers. This was determined by looking at the number of executed routes (overall

throughput through the study-area) and the overall average travel-time. For a market sat-

urations of 40% the reduction of average travel-time was about 6%. For higher saturations

the situation has an overall negative e�ect: although in principal some runs showed an im-

provement, in general the variance of travel-times is much larger. Re-routing at high market

saturation in undisturbed networks makes the system more unstable.
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(v) Increasing the update-interval has a small negative e�ect. This is quite intuitive, since the

shortest path search is based upon the current condition of the links and not on a projection

of the future condition. Increasing the update interval also widens this gap.

We re-ran the experiment with exactly the same parameters but used a route-set with f

acc

= 1:5. As

mentioned before, route-sets of later iterations used the tra�c network more e�ciently. Presumably,

online re-routing is less likely to produce better routes in a more relaxed network. The results

support this assumption: (a) the advantage of subscribers over non-subscribers diminishes by a

factor of �ve; and (b), there is no overall bene�t for all drivers for small market saturations but, as

before, a larger variance for higher saturations.

The question is now: how well relaxed is a real-world tra�c system? If it resembles the case

f

acc

= 1:5, it will be very di�cult to pro�t from the re-planning scheme presented here. Some

improvement may be brought about by trying to extrapolate the travel-time on links for future

times. This could be done by referring to data bases of standard tra�c con�gurations forecast by

the micro-simulation for the planning area, such as the day of the week or weather conditions. This

approach, however, must be handled with care since it will be di�cult to reproduce the startint

point of a forecast as an evolution of a given route-set.

In the last experiments we tried to investigate a more realistic tra�c con�guration by looking at

non-recurring congestion. We disturbed one link between 8:00 am and 9:00 am by reducing its

maximum speed given in CA units from the usual 4 to 1 [site/sec]. In reality this may have been

caused by a tra�c accident or a road construction. The important factor is that none of the drivers

knew of this obstruction beforehand. Therefore, there was no way that the external router could

have adapted to the situation. Simulation results show that the reduced throughput on one link

already reduces the overall throughput noticeably by about 8%. A modest re-routing alleviates the

problem but, as before, increasingly high market saturations worsened the situation.

We then increased the number of disturbed links from one to ten for the same time interval. This

time the system had considerably lower throughput for market saturations up to 20%. Above

that, online planning improved the throughput considerably. Even for higher market saturations,

the positive trend continues. We obtain increasingly lower average travel-times up to a market

saturation of 90%. In this respect, the heavily disturbed tra�c system signi�cantly di�ers from

all other cases above. It could be argued that ten simultaneous disturbances are unrealistic for

such a small area. However, even if reality lies somewhere between one and ten disturbances, we

show that, within the current framework, the amount of non-recurrent congestion appears to be

a key prerequisite for the success of an intelligent route guidance system in terms of throughput.

Possible bene�ts for drivers not familiar with the area and the congestion structure have not been

investigated. In fact, all drivers in the simulation correspond to \experienced" drivers.

Chapter 6

In the last chapter we shifted the focus to the computational aspects of tra�c simulation. The im-

plementation of PAMINA is based upon a domain decomposition of the street network. By looking
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at simple map parameters (i.e. the number of intersections and links) and hardware parameters

(i.e. communication bandwidth and latency) we were able to derive an upper limit for the theoret-

ical parallel e�ciency. It turns out that on a bus communication network, which is implemented

in many of today's shared memory computers, the simulation reaches high e�ciencies for medium-

sized computers (less than 64 CPUs). Further improvement can only be achieved on computers

that use a two-dimensional communication grid or similar scalable communication structures.

The next step in optimizing the iterative adaptive process described in Chapter 4 will be to in-

tegrate the components route-planner, route-converter, and micro-simulation into a compatible

parallelization scheme. So far, both the route-planner and the route-converter are only available in

a sequential version and the data exchange between route-converter and micro-simulation is still

strictly serialized. Moreover, the micro-simulation will have to be adapted to link with parallelized

versions of emission evaluation models and, ultimately, climate simulations models (see [26]).

The Appendix A contains a description of the Parallel Toolbox which was used for the parallelization

with a domain decomposition approach and PVM as message library. The �rst implementation was

run on a 16-CPU SGI Power-Challenge, but the approach also permitted the port to a workstation-

cluster of 12 SUN Sparc5 which yielded approximately the same performance. It was the �rst time

that a tra�c network of the size of the German Autobahn network could be simulated in real-time.

The toolbox also handles the dynamic load-balancing and allows the dynamic insertion and deletion

of CPUs during the run-time of the simulation.

It should be noted that in spite of increasingly more powerful computers, tra�c simulation still

requires a huge amount of computation time. For the results of Chapters 4 and 5 alone we needed

about 630 hours of parallel execution on 6 CPUs and 130 hours of sequential execution on one

CPU. If the simulation had not been parallelized, the overall sequential execution time on one

CPU with 250 [MHz] would have amounted to 3900 hours. This is equivalent to about 5.5 months

of continuous computation.



Appendix A

PAMINA

In the previous chapter we have outlined the domain decomposition as the basic approach for par-

allelizing a tra�c simulation on distributed memory systems. In this chapter we will give a concrete

overview of the actual implementation (A.1.1) of PAMINA. The description will concentrate on

PAMINA II since it is the only

1

version that provides dynamic load-balancing. The parallelization

scheme which is based upon the Parallel Toolbox will be described in section A.1.2. The chapter

will be concluded with an overview of the run-time statistics that can be collected in PAMINA II.

They include both computational statistics (i.e. run-time pro�ling) and tra�c statistics (i.e. link

characteristics vehicle count, density, and average velocity).

A.1 Implementation

A.1.1 General overview

The implementation of PAMINA II is based upon descendent C++ classes derived from the C++

base classes provided in the Parallel Toolbox Version 1.0. A detailed description can be found in

[103]. However, we would like to outline how the tra�c simulation interacts with the toolbox and

its basic functional elements (refer to Figure A.1). The PAMINA source code splits into three

major parts: (a) the underlying CA model, which is the most compact module containing only

about 500 lines of code, (b) the graphics support module with about 7.000 lines, (c) handling of the

tra�c network elements, the route-plans, and statistics with about 17.000 lines of code. The latter

also contains the interface to the Parallel Toolbox which by itself has about 29.000 lines of code.

The toolbox uses the commonly available message library PVM 3.3.1 as high-level communication

interface to the underlying computer hardware. PAMINA II and the Parallel Toolbox 1.0 have

been ported to several platforms, such as Sun Solaris, SGI Irix, DEC Alpha, IBM RS6000, and

PC Linux.

1

Dynamic load-balancing will be added to PAMINA III in the near future.

154
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500
CA

PVM 3.3.10

(descendant C++ classes)
PAMINA II

Graphics

(C++ base classes)

Parallel Toolbox 1.0

29.000

7.000

17.000

Figure A.1: Software implementation structure of PAMINA II | The parallel toolbox

serves as an interface between the tra�c application classes in PAMINA and the message passing library PVM. The

�gures in the lower right corners denote the number of source-code lines in each module. Note that most of the

programming e�ort was required for coding the network implementation.

The source-code of the toolbox and the micro-simulation cannot not be discussed in detail. We

would like to refer interested readers to the web page

http://www.zpr.uni-koeln.de/~mr/PAMINA/

Among other things it contains:

� instructions on how to retrieve demo versions of both the Parallel Toolbox and the PAMINA

micro-simulation,

� instructions on how to retrieve the source-code of both applications,

� a commented object hierarchy

2

of all C++ classes,

� a list of all options available for the con�guration �le,

� an overview of all features that are new in PAMINA III, and

� a description of all statistics �les.

2

The object hierarchy was created using the tool DOC++ [25].
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A.1.2 Parallelization

The inherent structure of a tra�c micro-simulation favors a domain decomposition as the general

approach to parallelization:

� The street network can easily partitioned into tiles of equal or almost equal size. A realistic

measure for size is not the number of net elements (nodes and segments), but the CA grid

lengths associated with those elements (see Figure A.2 for a schematic view of tiles and

Figure 3.6 for a concrete example). Tiles are then assigned to processors.

� The range of interdependencies between network elements are restricted to the interaction

range of the CA. All current rule sets have an interaction range of either v

max

� 35[m] or

2v

max

� 70[m] which is a short distance compared to the average length of the edge segments

(e.g. 484[site] � 3630[m] for map FRG, see Table B.1) in a motorway network. In a city

street network which has somewhat shorter segments on the average, there may be links

which are to short to hold at least 10 grid sites. We arti�cially enlarge the links to contain

the minimum number of sites. In any case, the most straightforward approach is to cut the

network at the middle of street segments.

� As a consequence of the distribution the tiles exchange boundary information containing all

vehicle data necessary for the execution of the tra�c rule set, resulting in local communication

between neighboring tiles. Obviously, there is no real counterpart for a boundary in the

original tra�c simulation. It is an artifact of the parallel implementation. We di�erentiate

between two resolutions of vehicle data: (a) the primary vehicle data only contains information

on the location of vehicle, which is required for the CA rule set. (b) The secondary data

contains all other information about the vehicle, such as maximum velocity and route-plan.

The tra�c links and intersections are mapped onto the structural elements supplied by the toolbox.

These are nodes, edges, and boundaries:

� The node class was used to represent exactly one node of the tra�c network. The toolbox

guarantees that nodes exactly reside on one CPN. This is advantageous for the substructures

(see 3.3.3) associated with a node: all elements can assume that other related elements of

the same substructure reside on the same CPN. If an incident edge happens to be split (see

below), at least the half of the edge next the node can be assumed to be local.

� The edge was used to represent a bi-directional multi-lane street segment. For each direction a

multi-lane CA grid was used. In contrast to nodes, an edge may be duplicated by the toolbox

in case that the incident nodes reside on di�erent CPN. Such a so-called boundary-edge or

inter-CPN edge is split exactly in the middle. A discrete CA grid of odd length l has to

be handled with care by assigning bl=2c sites to one and dl=2e sites to the other CPN after

breaking their symmetry. On one CPN the �rst half is active and on the other CPN the

second half.
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CPN link

CPN 2

CPN 3

CPN 1
CPN 2

CPN 1

CPN 0 CPN 0

SlaveMaster

(in)active intersection
tile boundary

(in)active edge
boundary edge CPN

Figure A.2: Geometric distribution of a street-network| Left: Tra�c network on the master:

inactive representation of the complete network. Active representation of the local sub-net. Right: Tra�c network

on a slave (here CPN 1): only active representation of the local sub-net.

� Exactly in the middle boundaries are retrieved from the grids and transferred to the remote

CPN. They contain information about the state of the tra�c system close the split point.

A.1.3 Initial domain decomposition

The toolbox handles the initial distribution and subsequent load balancing if requested. The

geometric node locations are used to perform a recursive orthogonal bisection of the tra�c network.

For the initial distribution of a network with nodes n

1

: : : n

N

onto CPNs C

1

: : : C

C

we have to make

three assumptions:

� We have performance values for each CPN given in arbitrary but proportional values S

1

: : : S

C

where larger values denote better performance.

� Each node n

i

has an estimated load l

i

associated with it which is derived from the complexity

of the node itself and all its incident edges. In particular, we use the number of CA grid{sites

on transfer lanes at junctions as a measure for the nodes, and the number of CA grid-sites

on tra�c links as a measure for the edges. In PAMINA III the actual execution time of the

previous iteration is used individually for each network element (also see 6.7).

� Each node n

i

has an Euclidean location (x

i

; y

i

).
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Recursive algorithm

The algorithm is de�ned recursively for a set of nodes n

p

: : : n

q

, a set of CPNs C

a

: : : C

b

, and

recursive depth d.

1. If the number of CPNs b� a+ 1 is one, assign all nodes to this CPN.

2. Otherwise, split CPNs in halves C

l

= fC

a

; : : : ; C

ba+b=2c

g and C

r

= fC

da+b=2e

; : : : ; C

b

g with

sum performances S

l

=

P

b(a+b)=2c

i=a

S

i

and S

r

=

P

b

i=da+b=2e

S

i

.

3. Sort nodes according to their x-coordinates for even depth d and according to their y-

coordinates for odd depth d.

4. Split nodes at node n

j

(p < j � q) into two sets N

l

= fn

p

; : : : ; n

j�1

g with load L

l

=

P

j�1

i=p

l

i

and N

r

= fn

j

; : : : ; n

q

g with load

P

q

i=j

l

i

in such a way that their load ratio is equivalent to

the ratio of the performance values:

L

l

L

r

!

'

S

l

S

r

Due to the granularity of the l

i

exact equality may not be achieved. In this case, j has to be

chosen in such a way that the inequality in minimized.

5. Split the subsets C

l

with nodes N

l

and C

r

with nodes N

r

recursively.

Corrections

Since no topological aspects are considered, the resulting tiles may not be connected anymore.

Nevertheless, each CPN can re-establish a single connected component by casting o� all superuous,

not connected components to neighbors and keeping the largest one only.

If the area of the map is not square, the �rst split of the nodes should be parallel to the shorter

edge of the rectangle. This way, unnecessarily narrow stripes are avoided.

A.1.4 Simulation control

The toolbox uses a master-slave algorithm as control logic for program execution. The master

process is started �rst, usually directly by the user. It spawns several slaves on the parallel computer

architecture. For the simulation itself the master also operates as a slave. It does, however, also

retain some additional functionality.

The following enumeration is supposed to convey an idea of the main steps executed during a

simulation run. See Figure A.3 schematic overview of such a run on four CPNs.

1. The user initializes PVM on the future master CPN by calling the interactive PVM-shell pvm.

He adds all CPNs manually or starts a script to do this automatically. The user starts the

application executable which is the master process.
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Figure A.3: Timing of a simulation run
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PAMINA III also supports MPI as message passing library, in which case the user simply

calls the application executable with one additional command line parameter (-np) de�ning

the number of CPNs to be used.

2. The master starts all other instances of the program on the slave CPNs. They will enter the

main message loop and wait for messages.

3. The master reads the network structure from the input data �les.

4. The master distributes the network and sends out messages to the slave CPNs with encoded

network elements.

5. The master sends an event to all CPNs to start a simulation sequence of a given number

of time-steps. All slaves send out the boundaries for the �rst time-step to the neighboring

CPNs. During that sequence the master mainly functions as a slave.

6. The slaves enter the main loop:

� They wait for the arrival of all boundaries from their neighbors.

� If necessary, statistical data (e.g. idle time statistics) is sent out.

� If idle-time statistics are available local load balancing is done.

� They execute a time-step.

� Unless the end of the sequence is reached they send out the boundaries for the next

time-step.

The master has several additional functions:

� If available, global statistical data from the slaves is processed and displayed.

� The X-Windows event queue is checked if there is need to update the graphics output.

� The PVM environment is checked for changes of the CPN topology. If necessary, CPNs

may be removed from the topology or new CPNs may be added to the topology.

7. The master stops the simulation by sending an termination event to all slaves.

8. The master and the slaves stop execution.

A.1.5 Boundaries

After the distribution of the nodes of the network there will be edges crossing CPN boundaries

which are called boundary edges. They are cut exactly in the middle so that each associated CPN

computes half of the edge. Note that, therefore, boundary edges exist twice (see Figure A.4). Before

either CPN can execute a time-step it obtain information about the objects on the remote CPN. We

di�erentiate between primary and secondary vehicle data. Primary data only contains information
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CPN 2

boundary boundary
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Figure A.4: Exchanging boundaries

about the location of the any objects in the boundary area, which is su�cient for evaluating the

CA rule set. Secondary data also contains information about (or rather copies of) the vehicles

themselves.

As for the width of the boundary we have to transmit information about all vehicles within the

interaction range. This requires encoding and decoding of all vehicle data that are located within

a range of v

max

sites from a boundary. The information is transferred to the remote CPN. Over

there, it is given to the duplicate of the edge which appends this information to the local data

stored on the edge. The additional data allows the execution of the time-step.

The actual size (byte-wise) of boundaries can be optimized by taking advantage of speci�c char-

acteristics of the CA rule set. If the local density is high, that is, the boundary is located within

a tra�c jam, there may be more than one vehicle per lane. The CA rules, however, only refer to

the immediate predecessor or successor on each lane, reducing the maximum number of vehicles

in a boundary to one per lane. Moreover, only the primary vehicle data is needed and not the

secondary data including the route-plan. This is true, at least for the �rst sub-time-step. In the

second sub-time-step all vehicle data is needed to guarantee a consistent vehicle migration across

CPN boundaries, which will be described next.

Consistent handling of boundary objects

Boundaries contain regions in which the same objects are handled by both CPNs (see Figure A.5).

In order to guarantee consistence of the simulation it is necessary that both instances of the same

object behave exactly identically. In case of a deterministic simulation this is, of course, no problem.

In case that decisions of objects depend on random numbers it is necessary to make the random

generator

3

part of the object and to pass it together with the object data to the remote CPN. In

the CA model the stochasticity of the motion of a vehicle is completely determined by a single

3

or rather: values necessary to reproduce the random sequence on the remote CPN, which could be for example

the current seed of the generator
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Figure A.5: Consistent handling of boundary objects

bit which is set with a probability of p

dec

. In PAMINA II this bit is included whenever secondary

boundary information is transferred.

During a time-step the objects on an edge usually change positions, that is, some will probably leave

the remote boundary and enter the normal active part of the edge whereas others will do vice versa

(see Figure A.5). After the time-step all objects have to be deleted that still remain in boundaries

supplied by remote CPNs (object 244 for CPN 1 and objects 332 and 567 for CPN 2). Likewise all

objects that have entered the local active part of the edge have to be permanently inserted (object

567 for CPN 1 and object 244 for CPN 2). Note that object 332 has to be deleted, too, although

it would be at the correct location for the next time-step. Leaving it in the edge, however, would

lead to collision with the boundary for the next time-step which will contain another copy of that

object.

A.1.6 Timing of a simulation time-step

The simulation uses a parallel update with a global time-step. However, synchronization of all CPN

is only performed after a so-called simulation{sequence comprising approximately 10-20 time{steps.

In between, there is only a weak synchronization through the exchange of boundaries. Between

neighboring CPNs there may be a di�erence in time-steps of �t = �1 as displayed in Figure A.6:

due to slow execution of time step 1 on CPN C, CPN B has received boundaries from CPN A for
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Figure A.6: Timing of boundaries

time step 2 and already for time-step 3. The toolbox bu�ers those early boundaries automatically.

The global time{step is used to guarantee consistent collection of statistical data: Although partial

results from the CPN may not be collected at the same physical wall-clock time due to a potential

time-step gradient (see [86]), they always belong to the same logical time-step. The master CPN

takes care of combining partial results.

Each global time-step is subdivided into two sub-time-steps. The �rst sub-time-step is used for

lane changing, while the second sub-time-step is used for forward motion. Each sub-time-step

requires the exchange of boundaries between CPN, although they are of di�erent resolution: the

�rst time-step only requires the transfer of primary vehicle data, while the second sub-time-step

also comprises the secondary data.

Each sub-time-step is subdivided into a preparation phase (P) and an execution phase (E) preceded

by the implicit local synchronization (IS) through boundary exchange as summarized in Table A.1.

sub-time-step IS/P/E Action

1 IS exchange primary vehicle data, gather statistics

1 P CONN, DR, MR, resolve dead-locks

1 E lane change

2 IS exchange all vehicle data

2 P CONN, ER, AR

2 E motion, migration

Table A.1: Timing of a simulation time-step

A.1.7 Dynamic load-balancing

During the execution of the simulation a quasi-dynamic load-balancing is performed in PAMINA II.

The implemented method corresponds to a local decision, local migration (LDLM

S

, see 6.3.2)

strategy applied to the network nodes. Incident edges are transferred or split accordingly. When a
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part of a local network has to be migrated, nodes are sequentially transferred along the boundaries

with the node furthest away from the center of the subnetwork being selected �rst. As an optional

restriction only those nodes can be selected that maintain one connected component on the CPN.

Measuring load

During the simulation each CPN keeps track of the time it spends on di�erent tasks:

execution time is the time used for execution of the micro-simulation itself. It includes the

time to update intersections and links, insertion and deletion of vehicles, and handling of

route-plans.

idle time is the time the CPN spends idle. In particular, for both PVM and MPI it is the time

spent in blocking receive calls.

graphics time is the time spent on retrieving and displaying graphics. As a rule this value will

be non-zero only for the master.

boundary time is the spent on retrieving, sending, and receiving boundaries.

work time is everything else.

In addition to those �ve timers, each CPN also computes the estimated load of the residing subnet

l and a performance P . The load is measured in the same units that were used for the initial

load-balancing (see A.1.3).

P = corrected load =

estimated load

execution time

=

l

t

This value is stored in a queue of constant length. The minimum value

P

min

= min

Q

P

of all values in the queue Q is used as a measure of realistic performance. In certain intervals each

CPN uses the neighbor statistics mechanism to propagate this P

min

information to its neighbors

together with l. Since the performance of the CA only weakly depends on the number of vehicles in

a grid we use a value proportional to the number of grid sites handled by a segment as a measure for

its computational load. Measurements (see Figure 6.5) con�rm that the time required for updating

one million sites [MUP] only varies by a factor of two for densities between % = 0:003 : : : 0:3.
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Selecting amount of transfer

As soon as a CPN receives a complete set of performance values from its neighbors, the following

steps are executed: Assume a CPN having n neighbors N

1

: : : N

n

with corrected performance

minimum P

min

1

: : : P

min

n

and estimated loads l

1

: : : l

n

. The local execution time is t

0

and the local

load l

0

. If the performance exceeds that of neighbor N

j

by a more than minimum percentage t

min

the CPN will try to migrate a part of its network to that neighbor.

To compute the exact amount let us assume that after the transfer the execution times of the two

CPNs t

0

and t

j

should be equal. If l

t

is the amount of load to be transferred one obtains

t

0

:=

l

0

� l

t

P

min

0

!

=

l

j

+ l

t

P

min

t

=: t

j

After isolation of l

t

one obtains

l

t

=

l

0

P

min

j

� l

j

P

min

0

P

min

0

+ P

min

j

:

This l

t

is the optimal amount of load that should be transferred. Unfortunately the CPN does not

know about the other neighbors of N

j

which might migrate load to N

j

, too. So l

t

is corrected by

a factor c which depends on the number of neighbors n

j

of N

j

, for example c =

1

n

j

, so that the

e�ective load amounts to

l

eff

t

=

1

n

j

l

0

P

min

j

� l

j

P

min

0

P

min

0

+ P

min

j

:

Thus, c serves as dampening factor to prevent the system from over-compensating.

Now, the load-balancing algorithm tries to migrate load to the neighbor it has the largest load

di�erence with.

Selecting time of transfer

The talk mechanism provides a means to perform a locally synchronized exchange of data during

load-balancing. It ensures that the time-steps of the sending and the receiving CPNs match exactly

before the migration is started. A so-called talk between CPN A from which it originates and

answering CPN B is executed as follows:

1. CPN A calls requests a talk from the toolbox passing three parameters:

� the ID of the other CPN,

� the Talk-ID, a unique number by which the \topic to be talked about" is identi�ed,

� a �T relative to the current time-step T

now

after which the talk is to be established.

2. CPN A continues execution until the requested time-step T

talk

= T

now

+ �T is reached. In

between CPN B has received the talk request. It also continues execution.
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3. Now, let us assume both CPNs A and B have reached the same time-step T

talk

. The toolbox

prompts CPN A to start the actual talk.

4. CPN A starts talking to CPN B in a ping{pong manner until either of them terminates the

talk.

5. Both continue their normal operation.

There are some aspects which need special attention:

� If both CPNs issue equivalent talk requests with the same Talk-ID and for the same e�ective

time-steps, a collision occurs. In this case one of the talk requests is canceled by the toolbox.

The Ids of the CPNs and the time-step are used to determine which one.

� A CPN might issue more than one request for the same time-step with more than one CPN

using one or more talk Ids. In such a case no assumption can be made in which order the talks

are initiated except that requests for the same time-step with the same CPN and di�erent

talk Ids are handled exactly in the order they were requested.

� There is only one active talk per CPN at any time.

� During the talk neither of the CPN performs any computation. Therefore the talk protocols

should be kept to be as short as possible.

Selecting tra�c network

At this point we assume that we know how much load is to be migrated and that the talk mechanism

has established a communication channel to the destination CPN. It is now necessary to determine

what topology is to be transferred. The toolbox takes an iterative approach (see Figure A.7):

1. CPN A goes through all boundary edges it has in common with CPN B

4

. All local nodes

that are reached by those boundary edges are added to a scan-list

5

.

2. Among all nodes in the scan list, the one closest to the center of mass of the sub-net is selected

for migration.

3. All edges leading from a local node to the selected node are marked to be migrated. All local

nodes reached by the incident edges of the selected node are added to the scan-list unless

they are already part of it. The selected node is removed from the scan-list.

4. Repeat steps 2 and 3 until the desired amount of topology is reached.

4

If CPNs A and B have at least one boundary edge in common, there is a CPN link between the CPN-node of

A and the CPN-node of B. This CPN link contains a list of all boundary edges that both CPNs have in common.

5

Some nodes may be reached by more than one boundary edge. They are only added once.
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a) b)

c) d)
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Figure A.7: Selecting topology | The sequence (a) through (d) depicts the iterative selection of three

nodes for migration from CPN A to CPN B.
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Some nodes which were transferred may be referenced by other CPNs. Those which will be called

third party nodes. The same applies to edges referencing a node which is owned by another CPN.

Those are called third party edges. In step (d) of Figure A.7 there is one node on CPN C referencing

one of the nodes to be migrated from A to B and one edge between A and C that will connect B

and C after migration. In such a case two measures are necessary:

� CPN C has to be informed about the change of ownership of the third party node.

� CPN A has to see to it that boundaries sent by CPN C for the third party edge will be

forwarded to CPN B. This is necessary since there is no synchronization between CPN C

and CPN A or B. So if CPN C is fast compared to CPN A it might have already sent out

boundaries for topology that is no longer residing on CPN A.

The toolbox handles this problem by keeping track of edges that have just been migrated to

another CPN. If a boundary arrives which refers to an edge no longer residing on the local CPN it

is forwarded to the new owner of the edge. Since the maximal time-step gap between neighboring

CPN is one, any forwarding information can be discarded two time-steps after the corresponding

migration.

A.1.8 Fault tolerance

Dynamic insertion of CPNs

The toolbox allows the dynamic insertion of a CPN during the run time of the simulation. This

option is advantageous in a local area network since the complete set of workstations in the network

may not be available at the start of the simulation. It is the responsibility of the user to prompt

the insertion of CPNs. The following list summarizes the most important steps of an insertion.

1. The user adds another CPN through the PVM-shell.

2. The master receives a prede�ned PVM message containing information about the new CPN

CPN

N

added and initiates a global synchronization for all CPNs at the end of the current

control step.

3. The master uses the idle time data of the most recent time-steps to determine which CPN

has least idle-time. Let CPN

A

be that CPN.

4. The master determines which neighbor CPN

B

of CPN

A

has least idle time.

5. The master prompts CPN

A

to transfer a single node having a common boundary edge with

CPN

B

to CPN

N

.

6. CPN

A

informs CPN

B

about the transfer with the new node having the status of a third

party node and possibly third party edges described in A.1.7.
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7. The master initiates the next control step and the simulation continues.

8. Over the next few time-steps load-balancing is blocked for the new CPN. Then, its neighbors

will start migrating nodes through regular load-balancing until its load is balanced with those

of its neighbors.

Dynamic deletion of CPNs

In contrast to the insertion of a CPN which can be seen as optional feature, the ability to dy-

namically delete a CPN CPN

D

is much more helpful in real-world computer networks. This time,

however, the event will probably be triggered by the shutdown mechanism of the UNIX operating

system. In a normal shutdown on a CPN each process receives the de�ned signal SIGHUP prompting

the process to terminate gracefully before the signal SIGKIL is issued. The toolbox uses the signal

to remove the CPN from the CPN topology before the CPN is completely shut down. Note that

this will probably require a longer delay period between the two signals than de�ned by default.

This can be changed by the system manager.

1. CPN

D

receives the signal SIGHUP.

2. CPN

D

refuses to accept any road network from its neighbors, but instead tries to migrate

everything down to a single node.

3. CPN

D

informs the master when the node count has reached one.

4. At the end of the current control step the master initiates a global synchronization.

5. The master picks out one neighbor CPN

A

of CPN

D

and prompts CPN

D

to transfer the

remaining node to CPN

A

.

6. The master terminates the slave process on CPN

D

.

7. The master initiates the next control step and simulation continues.

8. Over the next time-steps the neighbors of the deleted CPN will migrate load to their neighbors

(and so on) through regular load balancing until the excess load is distributed over the whole

CPN topology.

A.2 Background tra�c

In addition to the network tra�c generated by routes it is possible to select a certain density

of non-routed vehicles as background. These vehicles are generated automatically during startup

and are homogeneously distributed across the network. Their CA behavior is exactly equivalent

to that of routed vehicles except at network nodes: at terminators non-routed vehicles are not

removed from the network but reinserted into the opposite direction using connectors. Therefore
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non-routed vehicles do not \see" terminators at all. Also, they completely disregard ramps. As

for intersections of degree three and four, a certain ratio of non-routed vehicles behave as though

they had temporary route-plans: With a given turning probability a vehicle is marked and later

absorbed at the associated absorption range.

Note that for each vehicle this probability is only applied once even though it may remain on

the marking range for more than one time-step. This is to maintain a density-independent exit

behavior.

As a side e�ect the background tra�c can be used to check the consistency of the simulation espe-

cially for the distributed version: running the simulation without routes, that is, with background

tra�c only, the number of vehicles is constant. Inconsistencies due to the intersection or parallel

functionality can thus easily be detected since those usually result in a loss of vehicles or additional

(phantom) vehicles.



Appendix B

Tra�c

B.1 Route aging

Three di�erent route selection schemes were tried for the route re-planning in Chapter 4. We assume

a stationary distribution f(a). If g(a) is the probability for a route of age a to be re-planned, the

following equation has to hold:

f(a+ 1) = f(a)� g(a)f(a)�a (B.1)
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Figure B.1: Age distribution of route-plans | The theoretical curves for random and linear age

selection are overlaid by actual distributions retrieved from runs 10, 11, and 12.
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Figure B.2: Re-planning fraction with respect to iteration number | The linear age

selection starts out with fractions considerably above f

r

= 0:05. Only when the age distribution is stationary, the

re-planning fraction approaches its correct value.

Isolation of g(a) with �a! 0 yields

f

0

(a)

f(a)

= g(a):

Subsequent integration yields

f

lin

(a) = e

R

g(a)da

:

The most straightforward is the random selection method in which all routes are equally likely to

be picked independent of their age, that is g(a) = f

r

. We obtain a decreasing exponential function

f

rnd

(a) = f

r

(1� f

r

)

a

:

Figure B.1 depicts this function and counts which were retrieved from the 60 iterations of run 11. Up

to iteration 59 the points exactly overlay the curve. Iteration 60 has a fraction of 0.43 representing

all routes that have never been re-planned.

For run 10 during the �rst 20 iterations 5% of all the initial route-plan were re-planned. Afterwards,

all plans had been re-planned at least once. The �gure shows a linear decay which is centered around

the average fraction of f

r

= 0:05. After another 20 iterations with random selection, the points

match the exponential curve up to iteration 20. The iterations 20 through 40 show a higher fraction

than the exponential distribution but no exceptionally high fraction for the last one as in run 11.
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For the linear age selection we use g(a) = ca and f

lin

(0) = f

r

we obtain a normal distribution

f

lin

(a) = f

r

e

ba

2

Figure B.1 shows f

lin

for f

r

= 0:05 and the actual fractions from run 11. Note that the actual

distribution is slightly higher for small a. This is due to the fact that equation B.1 is only for

correct for continuous age distributions. The iterative process, however, does a discrete update.

Figure B.2 shows the re-planning fractions for runs 10, 11, and 12. Run 12 maintains its value

exactly at f

r

= 0:05 throughout all iterations. Run 10 has a linear increase until iteration 20 due

to the additional random selection of f

r

= 0:01 which overlays the reduced selection of f

red

= 0:05.

For run 11 the curve starts out at f

r

= 0:24 for the �rst iteration. It drops below f

r

= 0:05, but

eventually levels o� slightly above the desired value. The high re-planning fractions are caused by

the initial age of all route-plans, which were set to be a = 60 at the beginning of the iteration. If

we had used the actual age a = 0, the �rst iterations would have negligible re-planning fractions.

B.2 Map sizes

NRW FRG Dallas (local streets)

nodes 549 3,307 2292

edges 1,160 6,860 6124

terminators 19 46

ramps 349 1,568

intersections (degree=3) 39 176

intersections (degree=4) 21 58

nodes (degree 6=2) 79 280

transfer segments (TS) 1,720 7,440

lane-kilometer 11,712 74,844 2,276

sites 1,561,600 9,979,200 303,500

average edge length [sites] 448 484 50

Table B.1: Map sizes
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