
A First Draft on how to Integrate

High Fidelity and Cellular Automata Approaches

to Microsimulation in TRANSIMS

on a Distributed Computer Network

Version 1.0

Marcus Rickert

�y

February 11, 1995

�

mr@zpr.uni-koeln.de, ZPR Zentrum f�ur Paralleles Rechnen, Universit�at zu K�oln, Germany

y

rickert@tsasa.lan.gov, TSA-DO/SA, LANL, Los Alamos NM, USA

1



Contents

1 Introduction 3

1.1 General remarks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1.2 What's new? : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1.3 Technical terms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

2 Objects 4

2.1 Abstract data structures : : : : : : : : : : : : : : : : : : : : : : : : : 4

2.2 Object inheritence tree : : : : : : : : : : : : : : : : : : : : : : : : : : 5

2.3 Object dependency tree : : : : : : : : : : : : : : : : : : : : : : : : : 5

2.4 Base objects : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

2.5 Context objects : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2.6 Intermediate objects : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2.7 Simulation objects : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

2.8 Control objects : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

3 Simulation 14

3.1 Cellular automata (CA) approach : : : : : : : : : : : : : : : : : : : 14

3.1.1 Basic characteristics : : : : : : : : : : : : : : : : : : : : : : 14

3.1.2 Optional characteristics : : : : : : : : : : : : : : : : : : : : 15

3.1.3 Implementation : : : : : : : : : : : : : : : : : : : : : : : : 16

3.2 High �delity (HF) approach : : : : : : : : : : : : : : : : : : : : : : : 16

3.3 Integration of CA and HF approaches : : : : : : : : : : : : : : : : : 16

3.4 Queue management : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

3.5 Memory management : : : : : : : : : : : : : : : : : : : : : : : : : : 17

3.6 De�nition of driver behaviour : : : : : : : : : : : : : : : : : : : : : : 19

4 Parallelization 19

4.1 Platform : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

4.2 Distribution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

4.3 Dynamic load balancing : : : : : : : : : : : : : : : : : : : : : : : : : 21

4.3.1 Global load balancing : : : : : : : : : : : : : : : : : : : : : 23

4.3.2 Local load balancing : : : : : : : : : : : : : : : : : : : : : : 23

4.4 Boundaries : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24

4.4.1 Timing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24

4.4.2 CA model : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24

4.4.3 HF model : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24

4.5 Data access : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24

4.6 Event handling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

4.7 A simple examplary run : : : : : : : : : : : : : : : : : : : : : : : : : 26

5 Problems 27

5.1 Handling of queues : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

5.2 Granularity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

5.3 Synchronization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

5.4 Scalability : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

2



1 Introduction

1.1 General remarks

First the reader should know that is only a working paper which tries to summarize all

ideas that might lead to a functioning application. The author strongly encourages critical

comments on any part of this paper. To designate the author's 'conviction' concerning his

ideas there are question marks added to the text with the following meaning: one ? states

that the solution is considered good, but doubt remains. Two ?? mean that there are several

options and the one chosen is (most?) suitable for the context. And three ??? suggest that

the solution chosen was a �rst (and probably not the best) guess. Nevertheless those parts

not containing any marks should be checked thoroughly, especially if they refer to source

code that has already been implemented in either the demo or the current working version

of the TRANSIMS simulation.

Also this summary is inhomogeneous as far as the level of detail is concerned. Some

aspects of the implementation are still very unclear so that in places only handwaving

arguments are given. Hopingly this will improve in future versions of this summary as

implementation proceeds.

1.2 What's new?

High �delity tra�c simulations have been created by several scienti�c and engineering groups

all around the world over the last decades. Due to its scale TRANSIMS will run into

the same problems as any of its predecessors: computational speed provided by today's

conventional

1

computers is still not su�cient to cope with the extremely large number of

individual objects that have to be simulated in real time for a realistic network (e.g. of a

major city like Albuquerque).

In this paper two methods will be described to increase the performance of the simulation

and thus to make a large scale computation feasable:

� Parallel computers will be used to distribute the network onto several computational

nodes. The toolkit PVM will provide a programming environment that allows the

porting on a large variety of modern supercomputers like the CM-5, the Paragon, or

the Parsytec. Also the implementation should comprise a means to perform a dynamic

load balancing in case a high performance workstation cluster (e.g. SUN Sparcs or

IBM Riscs) is chosen as a platform.

� Cellular automata will serve as an alternative model for simulating the motion of

the vehicles. In contrast to the high �delity model based upon intelligent objects CAs

can be regarded as a low �delity solution which still captures the main characteristics

of tra�c ow while boosting computational speed by a factor of 10 to 100. There are

limitations to the concept of CAs which will probably emerge as soon as �rst test runs

are performed. Certain problems will deliver unsatisfactory (or even qualitively wrong)

results when solved in an CA approach. One of the main objectives of a program which

integrates both models will thus be

{ to compare results quantitively and qualitively, and

1

that is normal single node computers

3



{ to �nd parameters by which to decide whether to use slow high �delity or the fast

low �delity approach.

1.3 Technical terms

Here are some of the technical terms used in this draft just to make sure writer and readers

have the same understanding of the matter.

� Node: Node of the tra�c network to which segments are incedent. These are mainly

junctions and intersections.

� Segment: Part of the tra�c network representing a street, road or highway segment

between two nodes.

� Network: Entity of all nodes and segments usually provided as ASCII input �le.

� Computational Node (CPN) One unit in a parallel computer system.

� Topology: The way CPNs are arranged and accessed in a parallel computer system.

� Tile Part of the geometric area covered by the tra�c network that will be assigned to

a CPN.

� Boundary The interface part between two neighbouring CPNs usually containing

data about objects close to the edges of the CPNs.

2 Objects

Objects will be the main means of storing and handling data in the simulation. As far as the

high �delity (HF) model is concerned object oriented source code has been implemented in

the current version of TRANSIMS. As for CAs, however, the idea of high level contructs and

dynamic memory allocation which usually goes along with objects contradicts the guiding

line to keep structures easy and linear and thus fast. So there have to be some compromises

between these two (normally) opposing approaches: In the hierarchical structure of the

program with simulation control at the top and the individual vehicle at the bottom the

border between strict object oriented approach should be set as low as neccessary to allow

for the integration of the HF model but as high as possible to achieve good results.

2.1 Abstract data structures

In the implementation, �ve abstract data structures will be used to handle sets of objects

'in an orderly fashion'. They will either be taken from a library (if available) or be writ-

ten especially �tted for this simulation. All should be provided as templates to allow for

maximum programming comfort and to enhance readability of the source code.

Non intrusive singly linked list

This is just a regular singly linked list that handles type cast (through templates) pointers

of objects.

4



Non intrusive doubly linked list

Equivalent to the singly linked list.

Binary tree

The binary tree will be used to organize message passing between the CPNs

2

especially for

broadcasting and gathering statistical data by reducing.

Heap

The heap will be used to �nd the maximum or minimum of a characteristic of a dynamically

changing set of objects. An example is the scheduler which sorts the received events by the

time stamp of each scheduled event. The event with the minimum in time will be executed

�rst.

AB-tree

An AB-tree is de�ned as a tree in which all non leaves have at least A sons and at most

B sons. It can be shown that AB-trees have always a depth complexity of O(logn) and

therefore all dynamic insertions and deletions can be done in O(logn) time complexity.

Usually an in�x order is applied to the AB-tree to allow for quick managing of sorted sets.

In this simulation the ID-tree which links IDs with pointers will be organized in an

AB-tree.

2.2 Object inheritence tree

See �gure 1. Arrows point from parent to child.

2.3 Object dependency tree

See �gure 2. Arrows represent relationship uses a. Labels like 1 : n denote the number of

objects used by another object. n may vary in each case.

2.4 Base objects

Three base objects are declared which all other objects will be derived from. They are

abstract objects; that is, there will not be any instances of the base objects but only

instances of derived objects although none of the object methods will be formally declared

abstract to allow for incomplete virtual rede�nition.

Object TID

The base object TID de�nes the ID by which each object will be identi�ed during the

simulation. A new ID will be assigned upon creation of an object which will be kept until

the �nal destruction of the object. An ID once assigned will never be reused. In case an

object is moved from one CPN (source) to another CPN (destination) it will be destroyed

on its source CPN and recreated on its destination CPN with the same ID it had before.

2

computational nodes

5



Base object

e.g. TCar

TObstruction

TGrid

TSite

TDriver

TMessage

template TReference

TEvent

TDataManagerTTraveller

TSimulationSlave

TSimulationMaster

TBaseSegment TSegment

TBaseNode TNode TTerminal

TVehicle

TPhantom

TScheduler

TLoadBalancer

TPlan

TQueueTGroup

TEventHandler TID

TNet

TIntersection

TIntelligentObject

TIntelligentParallelObject

Figure 1: Object inheritence tree

6



updated but not used in CA

CA only

TVehicle

TSegment

TNet

TIntersection

TNode

TGroup

TTraveller

TDataManager

TScheduler

TSite

TPlan

TBaseNode

TGrid

TBaseSegment

TLoadBalancer

1:1

1:1

1:n

TMessageControl

TQueue

TDriver

1:1

1:n 1:n

1:n
1:n

1:n

1:1

1:n

1:2

TSimulationMaster

1:n

1:1

1:1

1:1

G
lo

ba
l

L
oc

al

M
es

sa
ge

 le
ve

l

1:2

E
ve

nt
 le

ve
l

1:n

eventdirect

direct

TSimulationSlave

1:n

1:n

1:n

M
od

el
 d

ep
en

da
nt

 e
ve

nt
 le

ve
l

1:1 1:1

1:1

Figure 2: Object dependency tree

7



That way all references to its ID will remain valid although its physical location in the

cluster may change.

In addition to the ID assigned by the system the object TID will also contain the following

pieces of information:

� the original object number of the input �le for future references, and

� a type ID that identi�es the object as one of the object types used in the simulation.

Base object TEventHandler

The base object TEventHandler will be the parent of all objects required to react to events

which are passed down to them in the event control structure.

Base object TObstruction

The base object TObstruction will be used as parent of all classes that can be regarded as

temporary or permanent obstacle for tra�c ow (??). For example, queues for the direction

'straight ahead' at an intersection which can be empty or occupied represent an obstacle

for vehicles in the left turn queue of the opposite direction.

2.5 Context objects

Context objects are used to pass a huge sets of parameters to a function or an object

method. Their main purpose is to avoid modi�cations in the declaration of object methods

in case the number and/or type of parameters has changed. As an exception to the rule

they are not derived from base objects and do not have any children either. Normally they

do not have methods although it might be appropriate in some occasions to supply some

for extended data conversion and consistency checking.

Context object TObstructionContext

The object TObstructionContext contains all data neccessary for an object of type

TObstruction to decide whether it represents an obstruction or not.

Context object TStateContext

The context object TStateContext comprises all data neccessary for a driver to decide its

next action when triggered to so by an appropriate event. It is generated at the highest

hierarchy level that handles events and is gradually �lled in all intermediate levels until it

reaches its �nal destination object TDriver.

2.6 Intermediate objects

Intermediate objects combine characteristics of base objects but no instances will ever be

created from them. They simply serve as parents for all simulation objects and control

objects.

8



Intermediate object TIntelligentObject

The object TIntelligentObject combines the characteristics of base objects TID and

TEventHandler. It is called intelligent because it can react to events representing e.g.

real life incidents. In this object the two main virtual methods DecideNextAction and

DoNextAction are located. They will be replaced by appropriate methods of their children

if neccessary. Also the method Parse is rooted here which creates an instance of the object

from an ASCII input �le.

Intermediate object TIntelligentParallelObject

The object TIntelligentParallelObject is based upon TIntelligentObject. The main

methods are AddToMessage which prompts the object to add itself to an object of type

TMessage and ExtractFromMessagewhich will extract all data neccessary from the message

and initialize a new instance of the object. They will be replaced by methods of their

children.

2.7 Simulation objects

Simulation objects are central to the design approach described here. They represent those

entities of the simulation that can be transferred to another CPN in the parallel computer

topology. Most of them take an active part in the decision DecideNextAction either by

actually making it (TDriver) or by contributing part of their current state which the decision

will be based upon (e.g. TVehicle, TSegment).

Simulation object TBaseSegment

This object will not be described in detail. It should be regarded as a simple parent of

TSegment which only contains data neccessary to do the load balancing so that memory

requirements can be kept as low as possible on the master CPN.

Simulation object TSegment

TSegment contains all information about one street segment from one junction/intersection

to another. Parameters such as number of lanes or speed limit need to be unique for the

whole segment so that realistic segments with multiple values for the same parameter may

have to be split.

In the simulation hierarchy the segment will be the topmost level that is shared by CA

and HF approaches. At lower levels in the hierarchy it the two approaches will di�er:

� In the current HF version all vehicles are sorted according to their positions on the

segment before each DecideNextAction event. In future versions this sorting should

be avoided by handling vehicles dynamically in a sorted container class. One approach

is to supply each segment with an AB-tree (???) with all vehicles that currently reside

on the segment. Events arriving at the segment will be passed to each of the associated

vehicles. Statistics are collected from each vehicle and then evaluated at the segment

until aggregated results are passed to the upper layers.

Besides the AB-tree (called AB) there are two other structures to handle the vehicles

on a segment: the �rst one simply replaces the AB-tree with a doubly linked list (called

9



DLL) and does not require any further explanation. The second one (called CA) uses

the object TGrid of the CA approach to keep track of the relative positions of the

vehicles. Every vehicle would have a grid position (which is simply an integer number

identifying the site that the vehicles is closest to) and a relative continuous o�set (or

deplacement) within that site. In the following table advantages and disadvantages

are summarized. e denotes the number of vehicles currently residing on the segment, l

the length of the segment in arbitrary units, and v the vision range in arbitrary units.

aspect AB DLL CA

memory requirements O(e) O(e) O(l)

implementation easy easy tricky

move vehicle past n successors O(log e) O(n) O(1)

insert vehicle at random position O(log e) O(e) O(1)

check predecessors and successors O(v) O(v) O(v)

independence of CA yes yes no

modi�cations of original CA data structures no no yes

implicit transformation CA to HF no no yes

Table 1: Comparison of vehicle handling methods

� In the CA version each segment will have an array of grids (type TGrid), one grid

for each lane and direction. All events are passed to grids. All statistics are gathered

from the grids.

Boundary segments connecting two CPNs will exist on both CPNs with identical IDs.

Depending on whether the �rst or the second node is local, the object will handle the

vehicles on the �rst or second half of the segment and take of the boundaries. It may be

convenient to de�ne a child object of TSegment called TBoundarySegment (??).

Simulation object TGrid (CA only)

A TGrid represents one lane (for one direction) on a segment. It consists of an array of

TSites. In the CA model this level is the lowest that still evaluates events. At lower levels

of the hierarchy only direct evaluation of rules, execution of commands, and gathering of

statistics take place in order to maintain the high performance.

Simulation object TSite (CA only)

A TSite represents a box of approx. 7.5 meters length on a lane that can be either occupied

by a vehicle (in which case in contains a pointer to the vehicle of type TVehicle) or empty

(in which case the pointer contains a NULL).

Simulation object TVehicle

The object TVehicle represents the main object of the simulation that is updated and

moved through the network as the simulation proceeds. It has local methods de�ning its

current state and driving characteristics which are passed in TStateContext to its associated

10



driver for the decision DecideNextAction. The methods will be overwritten by its children

representing a certain vehicle class such as TCar or TTruck.

Each vehicle contains a group (TGroup) of travellers (TTraveller) that currently reside

in the vehicle. Of those one is designated to be a driver (TDriver).

subsubsection*Simulation object TTraveller The object TTraveller represents a per-

son having a travel plan. This person need not neccesarily be able to drive so that the

method DecideNextAction is not overwritten. Every traveller will be assigned to a vehicle,

as long as he is transported in that vehicle. He might be assigned to a queue or pool of

vehicles for the time he is independent from any means of transportation.

Simulation object TDriver

The object TDriver is the only object which justi�es the name intelligent object since this

is the one who actually makes the decision in the method DecideNextAction

3

. All other

intelligent objects simply contribute their state to make the decision possible. In the �rst

version of the simulation TDriver will only be tought how to drive a passenger car but in

future versions this should be extended to allow for a skill (or behaviour) pattern for a set

of vehicles.

As for the CA model the object TDriver will be moved along with vehicle it belongs as

well as groups and vehicle type but it will never be accessed directly during motion since

the CA rules do not require it.

Simulation object TGroup

The object TGroup administers a set of travellers that reside in the same vehicle. It will

supply the common partial route plan; that is, shared by all travellers in the group. Also it

will organize adding and removing travellers from a vehicle.

Simulation object TRoute

The object TRoute will manage a set of pairs of the form (segment, node) that de�ne

the travellers route plan in the network. Travellers on the same vehicle have at least one

subrange of their plans in common.

It may be suitable in future implementations to enhance the (..., node) part of a travel

route step by (..., queue, delay) to model travellers that are detached from the vehicle

network because they are spending their time at an o�ce, school, shopping center or the

like.

Simulation object TBaseNode

Like TBaseSegment the object TBaseNode is a simple parent of TNode restricted for the use

with TLoadBalancer.

Simulation object TNode

The object TNode represents locations where the end of at least one segment resides. There

will be two major types of nodes: most of them will represent logical elements found in

3

of course, this applies only the simulation, since we know that in reality the fact of being permitted to

drive has nothing to with intelligence

11



real tra�c like terminals

4

, ramps (2 outgoing segments), junctions (3 outgoing segments),

and intersections (4 outgoing segments). Some of them will only have the auxiliary task of

providing a means to split a realistic segment into two or more smaller ones whenever the

characterictics of that segment change.

Simulation object TTerminal

The object TTerminal is a child of TNode that has special methods to handle the insertion of

vehicles into the network and the absorption of vehicles from the network at time dependant

rates given in vehicles per time unit (?).

Simulation object TQueue

The object TQueue will hold vehicles that are in progress of passing through an intersection.

Each queue corresponds to a pair of (outgoing lane, incoming direction). In contrast to the

high �delity representation of vehicles on the segments (in the HF model) the intersections

will be modelled in a medium resolution approach in which they have no physical extent

and vehicles passing through them have no inuence on each other except blocking.

Since queues only hold pointers to the vehicles and these vehicles are not updated they

are independent of the model (CA or HF). Therefore they represent a way for integrating

the two models by using them as an interface. The only problem may be that vehicles

should still have a velocity while going through intersections, especially for the lanes going

straight. Otherwise there would be a clear discontinuity in the HF model.

Simulation object TIntersection

The object TIntersection has mainly three functions:

� It will serve as a event dispatcher for a two dimensional matrix containing pointer to

queues, one entry for each queue in the intersection.

� For each queue there will be a list of objects of parent type TObstruction which

determine whether a queue can be emptied; that is, whether a vehicle can leave the

queue (??).

� At signalized intersections there will be a time dependant matrix (probably bit coded,

??) that determines when vehicles may enter the queue.

2.8 Control objects

In contrast to simulation objects control objects either remain on the same CPN once they

have been created or if they move they serve only as temporary data storage (TMessage).

The main tasks handled by control objects are:

� Data retrieval from storage devices like hard disks,

� Data processing from ASCII format to internal object format,

4

terminals (1 outgoing segment) are used in this context for locations where vehicles enter or leave the

edge of the system, such as the city border or state border

12



� Organizing network topology by creating a graph from input data and distributing

it onto the CPNs,

� Message passing from one CPN to another or to a set of other CPNs,

� Event handling for communication within a CPN,

� Gathering of statistics by aggregating single vehicle characteristics.

Control object TReference

The object TReference will be used to access another object in the simulation. It will be

supplied as template to force type checking.

Control object TSimulationSlave

TSimulationSlave is the topmost object in the simulation hierarchy. There is one instance

on each CPN that has pointers to one instance each of TNet and TMessageControl. After

startup it will take care of initialization of local (CPN related) data structures. Then it will

enter the main loop which checks TMessageControl whether new messages have arrived

and if so will pass them to TNet for distribution. It will only leave this loop at the end of

the simulation.

Control object TSimulationMaster

The object TSimulationMaster is a child of TSimulationSlave. There is only CPN in

the parallel topology that has a TSimulationMaster instead of a TSimulationSlave. In

addition to the latter it has pointers to one instance each of the objects TScheduler,

TDataManager, and TLoadBalancer.

After startup it will use TDataManager to read data from the ASCII input �les and setup

the network with TLoadBalancer. Later it will start to distribute the network via messages

to each CPN (including itself). During the simulation it will switch between slave mode

in which it behaves like any other CPN and master mode in which it checks the scheduler

which events should be sent to the network.

Control object TNet

The object TNet handles the lists of those segments and nodes that reside a CPN. Its main

task is to distribute events it receives from TSimulationSlave and to gather statistical

data. Moreover it should be able to provide information about what percentage of time the

CPN is idle. This will be sent to TSimulationMaster to organize load balancing.

Control object TLoadBalancer

The TLoadBalancer object keeps track of segments and nodes as the TNet object does, but

it will do it for the whole network represented by TBaseSegment and TBaseNode objects.

During the run of the simulation it will always be informed about which subsets of segments

and nodes reside on which CPN. According to the idle time information it receives from

each CPN it will try to restructure the topology by sending out messages to move network

elements from one CPN to another.

13



Control object TScheduler

The TScheduler object will provide the master clock of the simulation. In the �rst

version it will (as in the demo version) emulate a time driven simulation by regularly

sending out DecideNextAction and DoNextAction events which will be dispatched by

TSimulationMaster to all CPNs. Each of the events will have a time stamp on it that

can be used by intelligent objects dependant on behavioural patterns repeated in regular

intervals such as TIntersection.

Control object TMessageControl

In its initialization phase TMessageControl will setup all data structures neccessary for

inter CPN communication. It will serve as an interface to the PVM library and the PVM

group library. During the simulation it will receive and store (if neccessary) all messages

from other CPN. It will also be used to send out messages.

Control object TDataManager

The TDataManagerObject will read formatted ASCII data and transform it into a form

that will be used by TLoadBalancer to build a whole network. For this object most of the

source code of the demo version or later versions should be used.

Control object TEvent

A TEvent is a temporary object used to transmit commands and data within a CPN or if

the event is encoded into a message even to other CPNs. Each event has an ID, a sender,

an addressee, and a time stamp. Children derived from TEvent will add local variables

according to their needs.

Control object TMessage

A TMessage is also a temporary object. It will be used to transmit events from one CPN

to another. Each message has an ID, a sender CPN, and an addressee which may be ALL

if the message is to be broadcast. In contrast to TEvent there will probably not be any

children from TMessage to allow for di�erent message types. Yet they will have di�erent

lengths due to the variety of events encoded.

3 Simulation

3.1 Cellular automata (CA) approach

3.1.1 Basic characteristics

The CA model that will be used for this implementation was developed by Kai Nagel and

Michael Schreckenberg [3]. The author has extended it to allow for freeway tra�c on two

lanes and interactions at junctions and intersections [4]. The main idea is that vehicles are

forced to move in a grid with boxes of approx. length 7.5 [m] called sites and that they

can only have the velocities 0; 1; : : :5 =: v

max

which are measured in boxes per time step.

During validation it turned out that the timestep is roughly a second and maximum speed

lies at approx. 112 [km/h].

14



The update of the vehicles on each lane is de�ned by three simple rules that represent:

� acceleration until maximum velocity is reached,

� decelaration due to obstacles (predecessors),

� additional randomized decelaration modeling driver behaviour.

In case of multilane streets or road three more rules are added to allow for lane changing:

� check whether the vehicle is going at the driver's desired velocity

� if no, check whether a higher velocity could be reached in the left or right lane

� if yes, check whether lane change is permitted; that is, check minimum gaps to prede-

cessors and successors.

In this basic model the following parameters are available: The column R/V/S denotes

Symbol Values R/V/S Meaning

a 1 [site=s

2

] R acceleration

d 1,2,3,4,5 [site=s

2

] R deceleration

v

d

1,2,3,4,5 [site=s] V desired speed

v

max

1,2,3,4,5 [site=s] S speed limit

p

proh

yes or no S passing prohibition

Table 2: Parameters of the CA model

whether the parameter is dependant on the rules, the vehicle, or the site that the vehicle is

on.

3.1.2 Optional characteristics

In future versions it may be appropriate to slightly enhance the CA rules to make them

more realistic. Among other things the following aspects may be taken into consideration:

� Asymmetry So far the CA model treats all lane equally which does not correspond to

tra�c regulations. In real tra�c the left lane is more often used as a passing lane the

the right one. The CA model should be able to simulate this behaviour by breaking

the symmetry.

� Both acceleration and decelaration yield values that are too high compared to

real life vehicle characteristics. In avarage it takes a vehicle 10 seconds to reach its

maximum speed of 112 [km/h] which is probably twice as high as the realistic average.

On the other hand a vehicle that is going maximum speed can come to a full stop

within 5*7.5=37.5 meters which is also very unlikely. Therefore the basic rules of CA

may need some tuning to garantee that vehicle behaviour is consistent with reality.

� Bothmaximum speed and desired speed are currently restricted to integer values

which allows only 3 reasonable speeds: 3,4,5. Through a minor change in the dece-

laration rule it may be possible to set the average maximum speed or desired speed

respectively to a continous value.

15



3.1.3 Implementation

The major objective of a CA implementation is simplicity in data structures and data

access which results in superior computational performance. To achieve this one has to

follow mainly four guidelines:

� Use arrays as means of storage.

� Avoid pointers.

� Update array elements linearly in a single simple loop.

� Use as few update rules as possible.

Guidelines three and four are easy to accomplish since the update itself only a�ects the CA

part of the simulation. The �rst to guidelines, however, directly interact with the HF model

since data structures are involved which should be common to both approaches.

In the following the data structure of the CA model will be described. As mentioned

earlier the object TSegment is the highest object in the simulation hierarchy that is still

common to both models. Each segment has as many pointers to grids as lanes are de�ned

for that segment. Each grid (object TGrid) consists of array of sites each representing a site

of length 7.5 [m] as de�ned by the CA model. Each site contains a pointer which can either

be NULL or point to a vehicle of type TVehicle. So in contrast to the original model the sites

do not contain the vehicle itself but only a reference to it. Moving a vehicle means moving

a pointer in memory. In terms of speed this, of course, slightly slows down the computation

since one level of indirection is added. The advantage is, however, that the same instances

of vehicles can used for both approaches. Switching between the models is then reduced to

updating a few local variables of the object TVehicle.

3.2 High �delity (HF) approach

The features of the HF model are mainly de�ned by the TRANSIMS demo version plus

the enhancements added inbetween by John Prior and Doug Roberts [1]. It is important to

mention that the �rst step of this project merely consists of implementing all components

neccessary for the CA part. Nevertheless all data structures should be such that the HF

model can be added in a second step in a natural way without modi�cations of neither

object inheritence nor object dependence.

3.3 Integration of CA and HF approaches

During simulation it should be possible to

� simulate the network partly according to the CA model and partly according to the

HF model

� change the underlying model for any given segment.

The second feature is the easier one of the two because one only has to de�ne routines

that convert a con�guration of vehicles given in CA parameters into a con�guration in HF

parameters and vice versa (with a loss of accuracy).

16



The �rst feature requires that there has to be a mechanism to transfer vehicles from a

CA segment to a HF segment which is consistent with both models and yet fast enough in

order not to slow down the CA model if running without the HF part.

An easy approach would be to use the queues that exist on each node as an interface.

These queues will be provided with methods to delete vehicles from segments and insert

vehicles into segments respectively. It has to be mentioned that as far as performance is

concerned the implementation of the queues will play an important role that should not

be underestimated especially in networks with a short average segment lengths and thus a

high node to segment length ratio.

3.4 Queue management

Queues will be modelled as a site oriented CA that should be as similar to the CA used on

the segments as possible (see 3). The number of sites will be determined by the length of

the queues (left and right turns) or the extent of the intersection (through lanes). Yet all

queues will have at least a length of v

max

sites so that a vehicle traversing an intersection will

have to spend at least one timestep on the intersection. This will simplify implementation

considerably.

As far as the update is concerned the following rules apply:

� All vehicles (HF and CA) will be updated according to the CA rules although HF

vehicles will maintain their velocity while going through straight ahead (provided that

there is no congestion).

� For turning lanes there will be a speed limit which will be imposed the moment the

vehicle enters the queue.

� The intersection provides the feeding segment with boundaries (CA) or predecessors

(HF).

� The feeding segment actively insert its vehicles into the queue.

� The destination segment provides the intersection with boundaries (CA) or predeces-

sors (HF).

� The intersection actively inserts its vehicles into the destination segment.

� Blocking will take place either

{ at the beginning of the queue according to the state of the tra�c lights, or

{ at certain places within the queue according to obstructions preventing vehicles

to leave the queue.

3.5 Memory management

For all objects that are likely to change CPNs (such as TDriver, TVehicle or TRoute)

optimized allocation (getmem) and deallocation methods (free) will be supplied to keep

administrive overhead as small as possible. Free memory for instances of these objects will

be handled in arrays with lists linking the free entries. Dynamic memory allocation will only

be neccessary if the number of objects of a given type temporarily exceeds the estimated

maximum number of array entries.

17



CA or HF segment

active insert

blocks operated by obtructions

blocks operated by traffic lights

Figure 3: Queue management

18



3.6 De�nition of driver behaviour

So far the de�nition of driver behaviour is accomplished by actually writing C++-Code

which results in several disadvantages:

� The code produced is very likely to have errors, since behavioural rules usually trans-

form into 'endless' IF{THEN{ELSE structures which are di�cult to overview once

they have been written.

� The code is programmer dependant since there might be some matters left to individual

interpretation.

� The code is system dependant since the transformation of behavioural rules into check-

ing of parameters depends on the combinaton of parameters available in a speci�c

platform.

Therefore the option of implementing a cross compiler for behavioural rules should be taken

into consideration as has been done in the project PARAMICS [2]. Maybe it is even possible

to use the same compiler by simply adapting it to the TRANSIMS environment.

4 Parallelization

In microsimulations computational speed is one of the main objectives. Any simulation

should run as fast or faster than the problem it tries to model takes in real time. For a

large scale simulation of a tra�c network this is only possible by distributing the network

onto several computational nodes.

In the �rst step of the implementation the CA version should be able to

� distribute the network onto several computational nodes,

� perform a dynamic load balancing during the progress of the simulation in a straight

forward easy approach,

� remove or add computational nodes (except the master control node) during the

progress of the simulation after an appropriate waiting period.

In the second step e�orts can be taken to

� optimize the load balancing so that the frequency and/or amount of communication

between nodes is minimized,

� enhance the system so that any node of the parallel system can take over the position

of the master control node.

4.1 Platform

Roughly spoken at the moment there two major types of parallel super computer hardware:

� The �rst type can be called the high end version because it usually includes especially

designed hardware and/or software for both on node computation as well communi-

cation between the nodes such as the CM-5 (Thinking Machines) and the Paragon

(Intel). On these systems programs are usually assigned to dedicated node; that is,

19



Tile 1

Tile 7 Tile 8

Tile 6Tile 5

Tile 4

Tile 3

Tile 2

Figure 4: Initial distribution of nodes onto CPNS

they run in a multiple task single user environment. Dynamic load balancing is only

neccessary if the load that is imposed by the simulation itself changes during the run

of the simulation. In case of a microsimulation this very likely to happen since the

computation is more or less proportional to the number of vehicles residing on a CPN

and as the vehicles travel through the network the load might move accordingly.

� The second type of parallel systems is simply a cluster of workstations connected by a

LAN such as Ethernet or better FDDI. Compared to their high end counterparts they

are far less expensive but often su�er from poor performance as far as communication is

concerned. Moreover being multi user multiple task systems they are more demanding

in respect to dynamic load balancing since nodes are very likely to be blocked by

co-users or even have to be rebootet once in while.

To keep the implementation as portable as possible the library PVM was chosen (?) to take

care of the communication between the computational nodes. As of the latest version of

README �les PVM exists in native ports for both the CM-5 and the Paragon so that a

relatively high speed can be expected on these platforms. As for the workstation clusters

PVM allows to combine di�erent operating systems and/or hardware in a LAN or even

globally via Internet.

4.2 Distribution

As for distribution one has to destinguish between the initial distribution onto a given

number of computational nodes and the dynamic distribution that takes place to keep the

load balanced. Of course, if the dynamic load balancing is sophisticated enough it should

20



1.4

0.8

0.8

0.5

global

global

global

local

local
0.2

0.2
0.5

0.5

0.5

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0

0.5

global

1.5

CPN-node

CPN-edge

transfer direction

transfer value0.5

Figure 5: Local and global dynamic load balancing

be su�cient to start with single node and simply add the others one after another hoping

that the system will adapt accordingly. But since in the �rst step of the implementation

only a straight forward algorithm will be realized this is probably to naive an approach.

Therefore the �rst distribution will be geometric (?); that is, the area covered by the

network is split into as many parts as there are CPNs available in the topology. Since

the density of nodes and segments is not homogeneous measures will be taken to allow for

di�erently sized tiles. Figure 4 contains a network that is equally distributed onto 8 CPNs

each taking care of the nodes residing on its associated tile. In this example the number of

nodes was used to determine load. The future version may consider the number of edges,

the lengths of the edges and the number of nodes or combination of thereof.

As communication is more or less linear to the number of segments crossing the edges of

the tiles which in turn is linear to the circumference it will be the objective of the dynamic

load balacing to keep the tiles convex and as square as possible.

4.3 Dynamic load balancing

In order to handle dynamic load balancing the object TLoadBalancer will maintain a

CPN graph of the following structure:

� Each CPN will represent a CPN{node. This node contains

{ a list of all CPN{edges (see below) incedent to the node, and

21



{ the load value (which is computed from the idle time value) of the CPN

� Two CPN{nodes will be connected by a CPN{edge if they have at least one common

boundary segment.

� Each CPN{edge will have

{ a list of all its associated boundarie segments, and

{ a transfer value that will determine how much load will be transferred over this

edge during the next distribution.

During the simulation TLoadBalancer will regularly try to recon�gure the load of the CPNs

by transferring parts of the network between the CPNs. The recon�guration depends of a

local and a global balancing (refer to �gure 5). The following steps will be executed:

1. Receive idle time infos from each CPN and convert them into load values.

2. The global balancing will pick out the CPN with the highest load and as many CPNs

with insu�cient load as are neccessary to compensate for it. The transfer values of

all the CPN-edges leading from the insu�ciently loaded CPNs to the overloaded CPN

will be set accordingly.

3. During the local balancing each CPN will check the load de�ciency and load surplus

on its neighbours and try to balance it. It will change the transfer values on the

CPN-edges accordingly (add them, take mean or take maximum (???)).

4. For each CPN{edge having a transfer value greater zero TLoadBalancer will try to

move nodes from one associated CPN to the other. If there is more than one choice it

will take the node the transfer of which least increases (or even decreases) the number

of boundary segments belonging to that CPN-edge. Each node chosen for transfer will

be marked. An edge is marked if it changes its CPN association.

5. Synchronize.

6. Send out events triggering the transfer of the marked nodes.

7. Send out events triggering the transfer of the edges. Depending on whether the edge

used to be boundary edge or not the event will contain the full edge and dependant

information or 'half' of it.

8. Send out events triggering the deletion of the edges on the source CPNs.

9. Send out events triggering the deletion of the nodes on the source CPNs.

10. Update the CPN{graph.

11. Synchronize (??).

Terms

In the next two sections the following terms will be used:

22



term meaning

n number of CPN{nodes

l

i

current load on CPN{nodes i

v

i

valence of CPN{node i

l

opt

= 1 optimal load of a CPN

A

i

set of neighbours of CPN i

Table 3: Terms used in descriptions of dynamic load balancing

4.3.1 Global load balancing

TLoadBalancer will look for the CPN j having greatest load l

j

. Then it will look for k

CPNs n

1

: : : n

k

having least loads so that just

k

X

i=1

(1� l

n

i

) > l

j

� 1

A simple Dijkstra will be run to determine the shortest paths (where the weight of each

edge will be assumed as one) p

1

= e

11

: : :e

1l

1

through p

k

= e

k1

: : :e

kl

k

. The edges on paths

p

m

for m = 1; : : : ; k� 1 will be assigned the transfer values

l

m

^

i=1

transfer(e

mi

) := 1� l

n

m

:

On the last path the edges will be assigned

l

k

^

i=1

transfer(e

ki

) := l

j

� 1�

k�1

X

p=1

(1� l

n

p

):

4.3.2 Local load balancing

The local load balancing will regard the local load (of the CPN itself) and on all the

neighbouring CPNs. CPN i will compute load surplus S

i

on the neighbours according to

S

i

=

X

n

j

2A

i

;l

j

>1

l

j

� 1

v

j

;

and a load de�ciency D

i

on the neighbours according to

D

i

=

X

n

j

2A

i

;l

j

<1

1� l

j

v

j

:

The net load transfered to all neighbours is

T

i

= S

i

+ l

i

� 1

which will be distributed on neighbouring CPN{node n

j

and assigned to the associated

CPN-edge as follows:

t

ij

= T

i

1� l

j

v

j

D

i

23



4.4 Boundaries

As in the approach by Kai Nagel the network will be cut in such a way that boundaries are

in the middle of those segments that have nodes in neighbouring tiles. The reason for this

is that the interactions that take place on an open stretch of a highway are regarded to be

simpler than those at an intersection or junction.

4.4.1 Timing

Every CPN will send its boundaries to the neighbouring CPNs as soon as possible at the

beginning of a timestep. After that it will start waiting for its neighbours' boundaries to

arrive. As soon as all boundaries have arrived the motion part of the timestep is executed.

As Nagel pointed out this system cannot deadlock.

4.4.2 CA model

In the CA model the width of the boundary will be restricted to the maximum number

of sites n that a vehicle looks back or ahead which is currently 10. Each CPN will a

send message of the �rst/last n sites to its neighbours which will be used to determine the

behaviour of the vehicles leaving or entering the CPN respectively. Since vehicles residing

on the boundaries have to behave identically no matter whether they are updated in the

original CPN or in their future CPN one has to make sure that all data dertermining random

decision will also be transferred by the boundary.

4.4.3 HF model

Since the HF model is vehicle oriented and not site oriented vehicles will be transferred

in messages to the neighbours instead of sites. The number of vehicles depend on the

behavioural rules implemented. So far only the immediate successor and predecessor of

every lane is taken into consideration. Each CPN will only update the vehicles residing

on it at the beginning of a time step. Vehicles that have left the part of a segment that is

handled by its current CPN will be transferred to its new CPN at the end of the time step.

To easily �nd the vehicles next to a boundary (in the HF model) it is probably convenient

to introduce phantom cars (object TPhantom) that are �xed to the boundary so that during

update they will not change their positions (??). All methods of the object returning data

about its current state will be rewritten so that it returns its predecessor's/successor's data

instead.

4.5 Data access

All entities that are used in the simulation will be assigned a unique number through the

inheritence from object TID. On each CPN an AB-tree (called ID-tree) will be maintained

containing all pairs of (ID, pointer to object) currently residing on that CPN. Whenever an

entity moves from one CPN to another it will keep its ID but its entry in the old ID-tree

will be deleted and inserted in the tree on the new CPN.

All references to objects will be handled through objects of type TReference. The �rst

time a TReference is accessed it will search the local ID-tree, retrieve the corresponding

pointer to the object and return this pointer. On all subsequent calls it will simply return

the stored pointer.

24



4.6 Event handling

In the simulation four di�erent kind of events will be distiguished:

� Control events that are issued by

{ TSimulationMaster to control the general ow of the simulation such as start,

stop and synchronize which a�ect all CPNs, or

{ TLoadBalancer to trigger the recon�guration of the network which a�ects only a

subset or a single CPN, or

{ TScheduler to trigger certain steps in a simulation update such as

DecideNextAction and DoNextAction. They a�ect all CPNs in the system.

� Structural events are used to encode parts of the network and sent it to another

CPN. A structural event has exactly one source CPN and exactly one destination

CPN. A vehicle leaving a CPN will be encoded into an event triggering its recreation

on the new CPN.

� Boundary events are similar to structural events except that the information they

carry is not moved from one CPN to another but copied and has usually a restricted

life time on the destination CPN.

� Inquiry events resemble control events. They are also sent by TSimulationMaster

but ususally trigger actions that send data back to TSimulationMaster which is ag-

gregated on its way.

Before an event leaves its CPN of origin it is encoded into a message and handled by

TMessageMaster. On the destination CPN the message part is stripped with the event part

remaining.

In case an complex object (e.g. TSegment) is transferred to another CPN, a single event

only containing the object itself is not enough since it might contain both contain local

objects and references to dependant objects that will have to be transferred as well. Consider

an object like the one in �gure 6. TChild is an object derived from object TParent. It has

local objects such as TObject and references to dependants like TDependant. The

following order will be used to encode the complex object recursively:

1. Encode the parent object TParent.

2. Encode all local variables that are not objects and have global scope and encode heap

variables referenced by local variables.

3. Encode all local objects such as TObject.

4. Encode depandant objects like TDependant.

Note that every object is only a depandant of exactly one other object although it may

be references by several others. Indepandant objects that are primarily handled by other

objects are not encoded. Otherwise they would be multiply created on the destination CPN.

On the destination node the object is decoded in exactly the same order. In fact it is the

decoding and not the encoding that determines the order. Part A of the object may have

to encoded before part B because part A may contain information about how to decode

part B.

25



TIndependant

TDependant

is a TParent

TChild

local variables

has a TLocalObject

uses a

Figure 6: Order of encoding

4.7 A simple examplary run

1. The user initializes PVM by calling pvm and adding all CPNs manually or starts a

script to do it automatically.

2. The user starts the program on the master CPN with a start con�guration of slave

CPNs.

3. TSimulationMaster starts all other instances of the program on the slave CPNs

(TSimulationSlave). They will enter the main message loop and wait for messages.

4. TSimulationMaster reads the network structure from the input data and pass the

information to TLoadBalancer.

5. TLoadBalancer distributes the network and sends out messages to the slave CPNs

with encoded network elements.

6. TSimulationMaster sends an event to all CPNs to start the simulation.

7. TScheduler enters the main loop:

(a) It prompts all CPNs to send their boundaries to the neighbouring CPNs.

(b) It sends the events DecideNextAction and DoNextAction to all CPNs.

8. After a certain number of iterations there are several options:

� TSimulationMaster prompts all CPNs to send their idle time data. This infor-

mation is used by TLoadBalancer to redistribute the network.

� TSimulationMaster prompts all CPNs to send local statistical data about their

tra�c load which is aggregated by TSimulationMaster.

26



� The X-Windows event queue is checked if there is need to update the graphics

output.

� The interactive user interface is checked if

{ commands regarding the progress of the simulation were given,

{ CPNs have to be removed from the topology or new CPNs can be added to

the topology.

9. TSimulationMaster stops the simulation.

5 Problems

5.1 Handling of queues

In the current approach of the implementation of queues there is a bijective projection

between the queues in an intersection and the lanes leading up to the intersection. Unfor-

tunately this does not cover the special case that the same lane contains two lanes blocking

each other such as the left turn queue and the through lane queue on a single lane (per

direction) street.

5.2 Granularity

Boundaries will be located in the middle of segments to avoid the complex behaviour and

references close to nodes. Nevertheless the point where a segment is split is only indepedent

of the associated nodes if the segment is twice as long as vision range. This reduces the

potential number of segments that are suited for the placement of a boundary considerably

and thus creates a coarser grid for load balancing.

5.3 Synchronization

Synchronization is usually done by emptying the message queues on all CPNs in order to

continue the next part of the simulation either simultanously (which is di�cult to achive

and fortunately hardly ever neccessary) or consistenly; that is, referring to the same data

and time con�guration.

Since synchronization is very time expensive it should be restricted to cases in which

it is absolutely neccessary. Whenever possible the simulation should be permitted to run

asynchronously with di�erent time steps being processed on the CPNs provided that the

di�erence in time steps between neighbouring CPNs never exceeds one.

5.4 Scalability

Although the microsimulation part itself scales well with the number of CPNs provided

5

there are several aspects that scale only poorly:

� Processing of the input data is done by the master CPN. This also results in a severe

disparity of memory requirements since the whole network has to be stored to execute

the load balancing.

5

This only applies to parallel computer hardware that provides simultaneous local communication scaling

with the number of CPNs

27



� Graphics output is handled by a single CPN.

� Global actions such as gathering statistics or command dispatch triggers dense cascades

of local and/or global communication. This will especially a�ect workstation clusters

where communication between any pair of CPNs is always sequential.

References

[1] C. Barret and D.J. Roberts. The transims microsimulation status. Technical report,

TSA-DO/SA, Los Alamos National Lab, New Mexico, USA, 1994.

[2] D. McArthur. The paramics model: Present and future directions. Technical report,

SIAS Ltd., Edinburgh, 1994.

[3] K. Nagel and M. Schreckenberg. A cellular automaton model for freeway tra�c. J.

Physique I, 2:2221, 1992.

[4] M. Rickert. Simulation zweispurigen Verkehrsusses auf der Basis zellularer Automaten.

Master's thesis, Universit�at zu K�oln, 1994.

28


