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Abstract

This work is part of our ongoing e�ort to design and implement a tra�c simulation appli-

cation capable of handling realistic problem sizes in multiple real{time. Our tra�c simulation

model includes multi-lane vehicular tra�c and individual route-plans. On a 16{CPU SGI Power

Challenger and a 12-CPU SUN workstation-cluster we have reached real{time for the whole

German Autobahn network.
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1 Introduction

The importance of car and truck tra�c increasingly demands tools capable of realistic tra�c simu-

lation. Conventional applications, however, usually fail to reproduce the phenomena found in real

life tra�c because either (a) the resolution of the simulation is not �ne enough or (b) the considered

area is too small.

Only high-end computer architectures including parallel computing together with high-speed phys-

ical methods can deliver the computational performance necessary to tackle these problems.

This work is part of our ongoing e�ort of the project \Nordrhein{Westfalen Research Cooperative

Tra�c Simulation and Impacts on the Environment (NRW{FVU)" [1] at the Center of Parallel

Computing [2] to design a exible, high{performance simulation tool for vehicular tra�c. The

problem size was given by the current Autobahn network of Germany which amounts to approxi-

mately 75,000 kilometer of road lane. Estimating an average occupancy of 10% results in 1,000,000

vehicles, each following an individual route-plan during the simulation. We also used the Autobahn

network of Nordrhein{Westfalen (a sub{set of the latter) with approximately 11,500 kilometer of

road lane.

The tra�c model used in this implementation was developed by several authors, at �rst as a single-

lane version [3] and later extended to a two-lane version [4]. Rickert [5] implemented a parallelized

1



2 1. INTRODUCTION

tra�c simulation using cellular automata (CA) techniques running at multiple real{time

1

for the

German Autobahn network on an Intel Paragon. This simulation, however, was not capable of

executing individual routes, but used turning probabilities at intersections instead. Moreover it did

not include dynamic load balancing.

In the remaining part of this section we will give an overview of the CA in single-lane and multi-lane

tra�c simulation. The next section describes the network model and necessary modi�cations of the

original CA. We continue by outlining the parallelization scheme of the current implementation in

section three, followed by the results of the performance benchmarks in section four.

1.1 Tra�c Simulations

Generally, all road tra�c simulation models can be classi�ed into microscopic or macroscopic

(uid-dynamical) models. The microscopic (high-resolution) simulation uses individual cars, each

equipped with a route-plan it wants to follow. Their dynamics are modelled on very di�erent levels

of �delity

2

. One of the most detailed models uses a complicated delay di�erential equation for

every car [6], where the acceleration of the car depends on the distance and velocity di�erence to

the car ahead. Although such models perform nicely when compared to measurements, they are

computationally very demanding, and have a large set of parameters to be adapted to reality.

At the low end of complexity, we arrive at a model in which both space and velocity are discrete.

The dynamics of the cars are reduced to a few simple rules, which are controlled by a small set

of parameters. Models of this kind are called cellular automata (CA) for tra�c simulation, and

can be understood as a minimal microscopic model for simulating tra�c. To have only a small set

of parameters to calibrate a CA turns out to be a tremendous advantage when coping with more

complicated situations such as the lane changing behavior, where it is di�cult to calibrate the more

complicated models [7].

The macroscopic (low-resolution) models [8] describe the movement of blocks of cars, according to

some rules which utilize the continuity equation, together with the empirically measured relation

between the car density � and ow q. They can be understood as a spatial and time discrete version

of a partial di�erential equation describing a particle ow. Macroscopic models are able to simulate

road tra�c on very large networks, e.g. it is possible to simulate the German freeway network on

a single workstation [9] in real-time. Their main disadvantage, in our view, is their inability to

handle a large number of route plans. So, any investigations which rely on route plans, such as in

telematics applications, can not be done.

From the considerations made above, we think that the microscopic modeling is the most natural

way to simulate road tra�c.

1.2 Tra�c Simulation using CA

Let us briey summarize, how to simulate tra�c [3]. Space, time and velocity are discrete, each

cell is either occupied by a car or is empty. The length of a cell is 7:5m, which is interpreted as

the length of a car plus the gap between cars in a tra�c jam. One time-step lasts 1sec, which is of

the order of the reaction time of humans. Velocity ranges from 0; : : : ; v

max

= 5, corresponding to a

maximum velocity of approximately 120km=h.

Let n denote the current time-step, (�x)

n

the front bumper to front bumper distance between

the car we are looking at and the car ahead, and let v

n

, x

n

be the current speed and position,

respectively. Then we have the following set of rules, which are updated in parallel:

1

Multiple real-time means that several simulation seconds can be computed in one wall-clock second.

2

In this context �delity is often used as a synonym for accuracy.
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v = min(v

n

+ 1; (�x)

n

� 1; v

max

); (1)

v

n+1

= max(0; v � 1) with probability p

brake

; (2)

x

n+1

= x

n

+ v

n+1

: (3)

The �rst rule summarizes the interaction between two cars and their tendency to drive with max-

imum speed, if there is no other car ahead. The interaction is constructed to avoid any accident.

The second rule accounts for the di�erent kind of inaccuracies in human driving behavior, making

the model a stochastic CA. The third rule simply advances the cars v

n+1

sites.

The original model works with one maximum velocity only. However, it is simple to introduce a

distribution of velocities and di�erent car types (e.g. trucks).

Despite its simplicity, the model yields quite realistic behavior. It describes the spontaneous gener-

ation of tra�c jams, it gives space-time plots of tra�c ow, which look very similar to aerial views

of real tra�c, and it yields realistic fundamental diagrams. A fundamental diagram is the graphical

representation of the relation between average local speed hv

l

i and ow q. An example is shown

in �gures 1, where it is di�cult to distinguish between the simulated and the measured fundamen-

tal diagrams (see [10]), showing that the CA is capable of reproducing the observed macroscopic

behavior.

Even in more complicated situations the CA-model displays remarkably realistic behavior. Examples

are the mixing or weaving of two tra�c ows or the lane changing behavior of the model. We have

found a set of rules, which leads to the correct lane-usage behavior: on German freeways, the left

lane has a higher occupancy than the right lane, even for moderate values of the ow. This behavior

can be reproduced with the CA-model. More details can be found in [8].

1.3 Other Models and Implementations

Several other research groups are currently involved in large scale tra�c simulation. The TRAN-

SIMS [11][12] group at the Los Alamos National Lab simulates large urban areas down to individual

intersections on workstation clusters. The PARAMICS [13][14] group in Edinburgh (EPCC) simu-

lates the whole national federal road network on a Cray T-3D.

A comprehensive summary about how the tra�c CA has been used in simulation models can be

found in [15].

2 Model Description

Using the criteria introduced above, we would like to characterize our simulation (henceforth called

MicroSim) as a low �delity (CA), high resolution (both in time and space) tra�c simulation using

individual route-plans as routing method. This section will give a detailed description of how we

extended the original CA to cover net simulation.

2.1 Overview

The main objective of MicroSim is to execute route-plans in a realistic street network. Each route-

plan is de�ned by a source, a destination, a list of intermediate net points, and a departure time

which are used as follows: After the vehicle has been instantiated

3

at the given departure time,

3

In object-oriented programming languages the term instantiate is used for the dynamic creation of a memory

object (e.g. vehicle). These objects usually have a limited life-time before they are deleted or disposed.



4 2. MODEL DESCRIPTION

it will be inserted into the simulation network at the origin. It will then execute the route-plan

until it reaches its destination. Finally, it will be removed from the system after statistics about

its actual travel time have been collected. For the time being, the route-plan is to be regarded as

static for each simulation. There is no online rerouting being performed. This will be covered by

future versions of the simulation.

A simulation run is initiated by supplying a map de�ning the geometry of the street network and a

list of routes. Vehicles will be instantiated according to their departure times until all routes have

been processed. The simulation will continue until a given percentage of all instantiated vehicles

have reached their destination. This percentage should be chosen to �nd a reasonable compromise

between the duration of the simulation (small percentage) and a comprehensive overview over

successful route-plan execution (large percentage).

In addition to the tra�c volume generated by routes MicroSim provides a mechanism to generate

background tra�c (see 2.6) of a given density. In this case vehicles will be homogeneously instan-

tiated across the network before the actual simulation is started resulting in the selected density.

In contrast to their routed counterparts they do not carry route-plans at all. Instead, they change

directions at intersections according to a given turning probability. In case an un-routed vehicle is

about to leave the network, it will be reected with its current lane and velocity leading into the

opposite direction.

The network representation used in MicroSim is a graph in which each intersection represents a

node

4

and each street segment between intersections corresponds to two edges

5

. Moreover, there are

nodes de�ned by the natural boundaries of a road network with node degree one, called terminators,

and additional nodes with degree two where vehicles can enter or exit the network, called ramps

6

.

This network is usually supplied in two sets of objects: (a) the set of nodes, each of which has

a unique number (id) and the geometric location of the object, given in rectangular coordinates

relative to an arbitrary, but �xed point, and (b) the set of edges, each of which has two references

(by id) to nodes and optional information such as name, number of lanes, or speed limit.

This representation is an over-simpli�cation of the motorway-intersections found in real networks.

Figure 2 depicts an intersection of degree four with its given substructure and the corresponding

simpli�ed graph structure.

The reason why MicroSim is still based upon such a simple input data format is simply due to its

general availability. More elaborate data formats | especially for the German street network |

have only started to emerge. It will probably take another �ve years or so before a comprehensive

data base will be available. Meanwhile, the concept is to provide a set of substructures which can

be used as templates to model the real intersections. Currently available substructures are covered

in 2.5.

2.2 CA Rule Extension

The original CA model for tra�c simulation was de�ned for a single lane and periodic boundary

conditions [3]. One of the most important aspects of this approach was to keep the model as simple

as possible to allow for an e�cient implementation. Three rules proved to be su�cient for single-lane

tra�c. Later [4] the model was extended to include two-lane tra�c featuring realistic lane changing

behavior. The CA model used in MicroSim corresponds to the asymmetric version presented in [4].

An additional extension was made to allow for more than two lanes: in such a system, all center

lanes are possible candidates for collision whenever vehicles separated by a single site (orthogonal

4

vertex

5

A segment can correspond to one edge or two edges depending on whether the two directions are equivalent,

or not. MicroSim uses the latter, even if all characteristics of both directions are identical, since this symmetry is

broken during simulation, anyway.

6

The segments feeding the ramps are not part the network. Therefore they do not increase the degree of a ramp.

If the map were extended to include lower hierarchies, ramps would also have degrees larger than two.
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to ow of tra�c) decide to change to that very empty site between them. One way to resolve this

collision is to update the lanes from left to right or vice versa sacri�cing the concept of a purely

parallel update.

Let us now outline how route-plans are integrated into the CA behavior. It is important to realize

that a vehicle within the CA context does not really \see" a street network while it travels through

it. Rather, its \view of reality" is always restricted to the current grid. Likewise, the vehicle does not

actively exit a grid. Whenever it has to change grids to ful�ll its route-plan, it is passively absorbed

from its current location and emitted into the destination grid preserving its current velocity. Thus,

the only requirement for a vehicle to be absorbed correctly turns out to be in the correct lane or

possibly correct group of lanes when approaching a network node.

In the original model each vehicle evaluates its state deducing a truth value for the following

statements:

� change to left lane required: small gap on current lane, su�cient gap on left lane

� change to right lane required: su�cient gap on right lane

� change to left lane prohibited: vehicle within certain distance when looking over left shoulder,

or left neighboring site occupied

� change to right lane prohibited: vehicle within certain distance looking over right shoulder, or

right neighboring site occupied

Suppose a vehicle on lane l has to move to the group of lanes denoted by l

l

: : : l

r

. In order to

include lane changing induced by route-plans, the statements above can logically OR-ed with the

corresponding statement in the following table:

� change to left lane required: l

r

< l

� change to right lane required: l < l

l

� change to left lane prohibited: l

l

� l

� change to right lane prohibited: l � l

r

Note that the parameters describing these conditions can easily be coded with a few bits of a long

variable.

In \classical" cellular automata all state information was usually kept in one computer memory

unit (long or word). This was advantageous both for accessing state information (evaluation of rule

set) and moving state information (moving particles). If we applied this principle to our routed

vehicles, a site would include all CA vehicle information: the current velocity v, the identity, and

the route-plan. Unfortunately, the route-plan information is considerably longer than the original

CA. Moreover it does not have a constant length which would complicate the handling of the grid

considerably. Thus it was obvious to chose a di�erent approach.

As mentioned in [16][17], we distinguish between so-called primary vehicle data and secondary

vehicle data (see �g. 3). The CA update-logic actively accesses the primary data only, consisting of

the original CA state (current velocity) and parameters required for the lane selection as described

above

7

. The secondary vehicle data (route-plan) is kept in a data structure dynamically allocated

when the vehicle is instantiated. A pointer to that data is kept as the second component of each

grid site. During a CA update the primary data and the pointer to the secondary data are always

moved simultaneously.

7

The third important parameter is a random value (see 3.4).
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Near network nodes, the intersection control scans prede�ned areas for occupied sites (see 2.4).

Now, in contrast to the CA logic, the pointer to the secondary data set is actually evaluated to

retrieve routing information. In case a vehicle has to exit, the intersection control will change the

primary CA data to inuence subsequent CA behavior accordingly, until the vehicle is absorbed.

2.3 Route-plans

The �rst attempt of including route-plans into a medium scale tra�c simulation was done in one of

the early versions of the TRANSIMS project [18]: the interstate tra�c of the city of Albuquerque was

simulated on a single workstation to show the general feasibility of this approach. Nagel [16][19][20]

used a parallel computer with two CPN

8

to run a parallel net simulation based upon the single-lane

CA with individual route-plans. He examined iterative route-selection behavior of a group of drivers

travelling through the network. The NRW-FVU [1], TRANSIMS [12], and PARAMICS [13] groups

are currently designing large-scale tra�c simulations that include route execution.

For MicroSim, route-plans represent the third major input for the simulation beside nodes and

edges. Each route-plan entry contains information about the node id of the origin, the scheduled

departure time-step from the origin, the estimated travel time in simulation time-steps, a list of

node id including the destination as its last entry, and optional vehicle data.

MicroSim expects the routes to be sorted according to their departure time step. Thus the evaluation

of the route-plan is reduced to the following scheme: at every time step routes are sequentially read

until a departure time step is found that is larger than the current time step. For each route a

vehicle is created and loaded with that route. The vehicle is appended to the insertion queue of

the source associated with the given origin id. If there is more than one source per id (e.g. ramps)

also the second node id of the route-plan is scanned to determine the outgoing segment and thus

the speci�c source. Note that the scheduled time of insertion may di�er from the actual time of

insertion, since the source can only add vehicles to the grid if there are vacant sites. During intervals

of high insertion rates there will be a certain number of vehicles waiting (or 'pending') in the source

queue.

2.4 Basic Network Elements

We designed eight basic network elements which serve as building blocks for the intersection tem-

plates. Similar to the design of the tra�c CA, the basic elements are discrete in time and space.

Their rule-sets are of comparable complexity.

Transfer Segment (TS) Transfer segments are multi-lane CA grids of length l

transfer

used to let

vehicles travel from absorption ranges to emission ranges. They can have any number of lanes.

In case of n

lanes

= 1 the CA rule set is equal to the single CA of Nagel and Schreckenberg,

otherwise the lane-changing behavior described in 2.2 applies. The beginning and the end of a

transfer segment is either de�ned by a connector or a block preventing vehicles from advancing

any further.

Source (SRC) A source is associated with a network node and the outgoing lanes of a street

segment. It carries a queue of vehicles that are to be inserted into the street segment. Every

time-step it scans the �rst site on each lane for vacancy. Each vacant site is then �lled by

those vehicles in the queue which have been waiting the longest time. Compared to the \look

back" rule of the two-lane rule-set for lane changing, this is a rather simple behavior. A more

elaborate rule-set can be found in [16].

8

Computational Node: a more general term than processor for one unit of large computer system solving a part

of a distributed parallel problem.
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Sink (SNK) A sink is associated with a network node and the incoming lanes of a street segment.

Every time step it scans the last (closest to the node) v

max

sites of each lane to detect vehicles

that carry a route-plan whose destination node is the same as its own network node. Whenever

such a vehicle is found it is removed from the site and deleted after some information about

the route-plan execution has been collected.

Marking Range (MR) The marking range is used to mark vehicles for exit. It is associated with

a source street segment and a destination street segment. Every time-step it scans a range

of sites of length v

max

on the source segment for vehicles carrying route-plans that require

exiting to its destination segment. Whenever such a vehicle is found it will be marked with a

ag which inuences CA lane-changing behavior.

Absorption Range (AR) An absorption range is associated with a source street segment, a des-

tination street segment and a transfer segment. At every time-step it scans each lane (see

�g. 4) over a range of length l

merge

on the source segment for vehicles that are marked for

exit to its destination segment. Whenever such a vehicle is found and the corresponding site

on the transfer segment is vacant, it will be moved from the source segment to the transfer

lane preserving its current velocity. At the same time the ag which caused the transfer will

be reset.

Deceleration Range (DR) A deceleration range is associated with a street segment. At every

time-step it scans a certain set of lanes (not necessarily all lanes) over a range of length v

max

(see �g. 4) for vehicles marked for exit and currently located in a lane leading them to a wrong

destination. Whenever such a vehicle is found, its maximum velocity is decreased as follows:

Let v

i

denote its current velocity, v

i;max

its maximum velocity, and p

i

the position of the

vehicle, where p

i

= 0 (p

i

= v

max

� 1) represents the �rst (last) site of the range of the range,

respectively. Then

v

i;new

= min(v

i

; v

i;max

; v

max

� p

i

� 1)

v

i;max;new

= min(v

i;max

; v

max

� p

i

� 1)

represent the new current velocity and new maximum velocity, respectively. The vehicle will

never be able to leave the range in forward direction and will eventually stall at the end of

the range. It can only proceed by changing lanes and thus restoring its maximum velocity to

its old value.

Emission Range (ER) The emission range is the counterpart to the absorption range. It is

associated with a transfer segment and a destination street segment. At every time step it

scans each lane at the end of the transfer segment over a range of length l

merge

for vehicles.

Whenever a vehicle is found and the corresponding site on the rightmost lane of the destination

segment is vacant the vehicle is transferred from the transfer segment to the destination

segment.

Connector (CN) The connector is associated with a source street segment and a destination

street segment. At every time step it copies boundary information from the outgoing lanes

of the destination segment to the incoming lanes of the source segment and vice versa. The

associated CA grids can thus be regarded as uninterrupted so that no special rules are needed

to guarantee consistent update between segments.

2.5 Composite Network Elements (Substructures)

We hope to be able to capture the main characteristics of an intersection like throughput and

capacity by de�ning adequate template substructures and choosing available parameters accordingly.
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Composite Element TS SRC SNK MR DR AR ER CN

terminator 0 1 1 0 0 0 0 1

ramp 4 2 2 2 2 2 2 2

intersection degree 3 4 0 0 4 4 2 2 2

intersection degree 4 8 0 0 8 8 8 8 4

Table 1: Composite Network Elements

These are: the number of lanes n

transfer

of the transfer segment, the maximumvelocity and related

CA parameters of the transfer segments, the lengths and positions of the merge, absorption, and

emission ranges, as well as the relative position of the ranges with respect to each other. Throughput

measurements of real intersections will be used to validate the templates and compare them to other

models that have a higher �delity of their intersection representation [14][21].

Each composite network element is composed from several basic network elements described above.

In addition to their individual functionality they share the ability to forward vehicles with respect

to the through-lanes of a through-segment. This is done by using connectors to pass boundary

information of an incoming segment to the corresponding outgoing segment and vice versa. Which

lanes are to be regarded as through-lanes will be described below. Table 1 shows an overview over

how many basic elements constitute one composite element.

Terminator A terminator consists of a source and sink. They are necessary to de�ne boundary

conditions for the tra�c volume generated by routes. Since there is only one incident street

segment it is de�ned to be its own through-segment.

Ramp The ramp serves as an origin and destination for route-plan execution. Since vehicles can

leave into two distinct directions there are two sources (and, of course, two sinks) per ramp.

The through-direction is trivially de�ned.

Intersection of Degree 3 The substructure of an intersection of degree 3 (see �g. 5) is designed to

be asymmetric: two of the three incident street segments are regarded as through-directions,

one is subordinate. Since information about the actual structure of those intersections is

usually not available, the geometric graph information is used to determine the through-

direction as follows: for each pair of incident segments the enclosing angle is calculated. Of

those the pair with the angle having the smallest deviation from � is regarded as through-

direction, the remaining segment as subordinate.

Due to the discrete nature of the CA there is another characteristic: vehicles coming in on the

subordinate segment have to change lanes to reach either the left bn

lanes

=2c lanes for a left

turns or the right dn

lanes

=2e lanes for a right turn. Suppose two vehicles A and B end up on

the very last sites of the incoming segment with A bound to make a right turn, but located

on one of the left lanes, and B bound to make a left turn, but located on one the right lanes.

In such a case the vehicles will block each other from changing lanes, resulting in a dead lock

which is not automatically resolved through the CA rule set. Therefore at every time these

locations are scanned for pairs of vehicles which ful�ll the above condition. In case such a

pair is found the vehicles will simply be switched.

Intersection of Degree 4 The substructure of an intersection is regarded to be completely sym-

metric resembling a clover. Opposing incident street segments are regarded as through-

directions. Figure 6 shows the structure of this type of intersection. Note that due the

symmetry only 2 out of 8 transfer segments are displayed.
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2.6 Background Tra�c

In addition to the network tra�c generated by routes it is possible to select a certain density of

un-routed vehicles as background. These vehicles are generated automatically during startup and

are homogeneously distributed across the network. Their CA behavior is exactly equivalent to that

of routed vehicles except at network nodes: at terminators un-routed vehicles are not removed from

the network but reinserted into the opposite direction using connectors. Therefore un-routed vehicle

do not \see" terminators at all. They also completely disregard ramps. As for intersections of degree

three and four, a certain ratio of un-routed vehicles behave as though they had temporary route-

plans: With a given turning probability a vehicle is marked and later absorbed at the associated

absorption range.

Note that for each vehicle this probability is only applied once even though it may remain on the

marking range for more than one time step. This is to maintain a density-independent exit behavior.

As a side e�ect the background tra�c can be used to check the consistency of the simulation espe-

cially for the distributed version: running the simulation without routes, that is, with background

tra�c only, the number of vehicles is constant. Inconsistencies due to the intersection or parallel

functionality can thus easily be detected since those usually result in a loss of vehicles or additional

(phantom) vehicles.

3 Parallelization

The inherent structure of a tra�c microsimulation favors a domain composition as the general

approach to parallelization:

� The street network can easily partitioned into tiles of equal or almost equal size. A realistic

measure for size is not the number of net elements (nodes and segments), but the CA grid

lengths associated with those elements (see 3.5). Tiles are then assigned to processors.

� The range of interdependencies between network elements are restricted to the interaction

range of the CA. All current rule sets have a interaction range of either v

max

� 35[m] or

2v

max

� 70[m] which is a short distance compared to the average length of the edge segments

(e.g. 484[site] � 3630[m] for map FRG, see table 3) in a motorway network

9

. Therefore,

the most straightforward approach is to cut the network at the middle of street segments.

As a consequence the tiles exchange boundary information containing all data necessary for

the evaluation of the CA rule sets (see 3.4), resulting only in local communication between

neighboring tiles.

3.1 Parallel Toolbox

The parallelization of MicroSim was done by de�ning descendent C++ classes of the C++ base

classes provided in the Parallel Toolbox. A description of the toolbox is beyond the scope of this

paper. More information can be found in [22].

However, we would like to outline how the tra�c network is projected onto the structural elements

supplied by the toolbox. These are nodes, edges, and boundaries:

� The node class was used to represent exactly one node of the tra�c network. The toolbox

guarantees that nodes exactly reside on one CPN. This is advantageous for the substructures

(see 2.5) associated with a node: all elements can assume that other related elements of the

same substructure reside on the same CPN. If an incident edge happens to be split (see below),

9

This is an obvious di�erence to a city street network which has considerably shorter segment lengths.
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at least the half of the edge next the node can be assumed to be local. Other edges of the

subnetwork are local anyway.

� The edge was used to represent a bidirectional multi-lane street segment. For each direction

a multi-lane CA grid was used. In contrast to nodes, an edge may be duplicated by the

toolbox in case that the incident nodes reside on di�erent CPN. Such an inter-CPN edge is

split exactly in the middle

10

. On one CPN the �rst half is active and on the other CPN the

second half. Exactly in the middle boundaries are retrieved from the grids and transferred to

the remote CPN (see 3.4).

3.2 Initial Distribution and Load Balancing

The toolbox handles the initial distribution and subsequent load balancing if requested. The geo-

metric node locations are used to perform a recursive orthogonal bisection of the tra�c network.

Since no topological aspects are considered, the resulting tiles may not be connected anymore. Nev-

ertheless, each CPN can reestablish a single connected component by casting o� all superuous,

not connected components to neighbors and keeping the largest one only.

During the course of the simulation dynamic load balancing is performed. The implemented method

corresponds to a local decision, local migration (LDLM

S

, see [23]) strategy applied to the network

nodes. Incident edges are transferred or split accordingly. When a part of a local network has to

be o�-loaded, nodes are sequentially transferred along the boundaries with the node furthest away

from the center of the subnetwork being selected �rst. As an optional restriction only those nodes

can be selected that maintain one connected component on the CPN. See [24] for a more detailed

description of the dynamic load balancing.

3.3 Timing

The simulation uses a parallel update with a global time-step. However, synchronization of all

CPN is only performed after a simulation{sequence comprising approximately 10-20 time{steps. In

between, there is only an implicit synchronization through the exchange of boundaries.

The global time{step is used to guarantee consistent collection of statistical data: Although partial

results from the CPN may not be collected at the same physical wall-clock time due to a potential

time-step gradient (see [25]), they always belong to the same logical time-step. The master CPN

takes care of combining partial results.

Each global time-step is subdivided into two sub-time-steps. The �rst sub-time-step is used for lane

changing, while the second sub-time-step is used for forward motion. Each sub-time-step requires

the exchange of boundaries between CPN, although they are of di�erent resolution: the �rst time-

step only requires the transfer of primary vehicle data, while the second sub-time-step also comprises

the secondary data.

Each sub-time-step is subdivided into a preparation phase (P) and an execution phase (E) preceded

by the implicit local synchronization (IS) through boundary exchange as summarized in table 2.

3.4 Boundaries and Object Migration

Due to de�nition of the CA rule-set, there cannot be any concurrent computation of subnetworks

without local exchange of boundaries before every time-step. As described above, the subdivision

of a time-step even results in two exchanges for each time-step. So, in contrast to other mechanism

10

Note that, of course, a discrete CA grid of odd length l has to be handled with care by assigning bl=2c sites to

one and dl=2e sites to the other CPN after breaking their symmetry.
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sub-time-step IS/P/E Action

1 IS exchange primary vehicle data, gather statistics

1 P CONN, DR, MR, resolve dead-locks

1 E lane change

2 IS exchange all vehicle data

2 P CONN, ER, AR

2 E motion, migration

Table 2: Timing

(e.g. statistics) that require only regular but not necessarily frequent communication, the frequency

of communication cannot be changed for boundaries.

As to the length of boundaries, an optimization can be made by taking advantage of speci�c char-

acteristics of the CA rule set. Usually the boundary that has to be transferred is as large as the

interaction range

11

of the CA rules, which is currently v

max

. This would result in encoding and

decoding of all vehicle data that are located within a range of v

max

sites from a boundary. If the

local density is high, that is, the boundary is located within a tra�c jam, there may be more than

one vehicle per lane. The CA rules, however, only refer to the immediate predecessor or successor

on each lane, reducing the maximum number of vehicles in a boundary to one per lane. Moreover,

only the primary vehicle data is needed and not the secondary data including route-plan. This is

true, at least for the �rst sub-time-step. In the second sub-time-step all vehicle data is needed to

guarantee a consistent vehicle migration across CPN boundaries, which we will describe next.

After each second sub-time-step there is a certain chance for vehicles to have crossed the inter-CPN

boundaries. Let us consider the case of a vehicle migrating from origin CPN A to destination CPN

B: The vehicle is updated by both CPN in an identical fashion. Afterwards CPN A disposes the

vehicle, while CPN B converts it from a boundary vehicle to a local vehicle. In a non-deterministic

simulation this requires that the random numbers de�ning the stochastic part of the CA rule-set

must be reproduced on both CPN. This can easily be achieved by including the random number

into the primary vehicle data which is transferred in each sub-time-step anyway. In MicroSim a

single bit is used to carry the stochastic information.

3.5 Load Estimate

Since the performance of the CA only weakly depends on the number of vehicles in a grid we

use a value proportional to the number of grid sites handled by a segment as a measure for its

computational load. Measurements (see [24]) con�rm that the time required for updating one

million sites [MUP] only varies by a factor of two for densities between % = 0:003 : : :0:3

As for the nodes their load was estimated by �rst summing up the sites on all transfer segments and

secondly weighing this value by a factor f

node

to include the increased computational load generated

by the additional intersection functionality.

11

Actually, the real value that de�nes the boundary length is the maximumof both interaction range andmaximum

velocity, but in a consistent, collision-free CA update the �rst is always at least as large as the second. In our current

rule-set they happen to be equal.
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NRW FRG

nodes 549 3,307

edges 1,160 6,860

terminators 19 46

ramps 349 1,568

intersections (degree=3) 39 176

intersections (degree=4) 21 58

nodes (degree6=2) 79 280

transfer segments (TS) 1,720 7,440

lane-kilometer 11,712 74,844

sites 1,561,600 9,979,200

average edge length [sites] 448 484

Table 3: Network Sizes

4 Performance

We did measurements using di�erent street network sizes on two di�erent computer architectures,

both with PVM (see [26]) as underlying communication library. One platform was a workstation

cluster of 12 SUN SPARC-station (5, 10, and 20 with performances between 133 and 135.5 MIPS)

connected through 10 Mbit Ethernet (PVM architecture SUN4SOL2). The other one was a 16

processor SGI Challenger (SC 900 XI) Shared Memory system (PVM architecture SGI64). On the

latter we did not explicitly use the shared memory architecture, but the PVM architecture SGI64

which is based on UNIX sockets for inter-process communication.

The networks consisted either of the whole GermanMotorway network (FRG) or an excerpt thereof,

namely the sub-network of the federal state Nordrhein-Westfalen (NRW). Table 3 gives an impres-

sion of their respective sizes.

Since the available data did not contain any information about street segment characteristics nor

substructures of intersections we used the defaults n

lane

= 3, v

max

= 5, and p

brake

= 0:5 on all

segments, as well as n

transfer

= 1, l

merge

= 5, l

transfer

= 200[m] � 26[site] for all intersections

and ramps. The density of background tra�c was set to % = 0:1 for measurements on the SGI and

% = 0:05 on the workstation cluster. Note that we did not actually use route-plans since �lling the

network with the help of route-plans would take considerably longer and vary the computational

load until a constant density is reached. As the performance only su�ers less than 5% during vehicle

insertion activity the measured values are also true for routed simulations. Figure 7 shows that after

approximately 200 time-steps of load balancing the simulation reaches its optimal performance.

Since there was not any other activity on the computer systems during the measurements, this load

balancing activity is only due to the imbalances caused by the initial distribution: The work station

cluster was running idle and the SGI was only loaded with jobs running at a high nice-level. Judging

from the load reported by the UNIX-utility top the performance on the SGI may be improved by

another 5% to 10% if the machine were not loaded otherwise.

5 Summary

In this paper, we presented a new framework to perform high-speed tra�c microsimulation. The

concept is based upon cellular automata as underlying tra�c model and parallel computer archi-

tectures for e�cient implementation. The CA simulation part (500 lines of C-code) was embedded

in a C++ class library handling the net simulation (10,000 lines of C++-code). Our toolbox for
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parallel distribution and dynamic load balancing (25,000 lines of C++-code) served as a link to the

parallel message passing library PVM.

We have shown that realistic system sizes can be computed in real-time or faster. The complete mo-

torway network of a medium-sized country like Germany can be computed in real-time on hardware

that is already available at many institutions. For a smaller network (map NRW) the real-time-ratio

reaches almost factor four.

The original concept of cellular automata was preserved wherever possible resulting in a high perfor-

mance. Route-plans were added to the tra�c model by using secondary vehicle data to give vehicles

individual properties. We provided a simple set of structural elements to build intersections which

can be used as templates to model intersections found in real networks. The next step must be to

validate these structural elements. Moreover the CA-rules (especially the lane-changing) have to be

reconsidered to show a benign behavior close to intersections.

An immediate application of our microsimulation is the iterative computation of origin-destination

matrices using individual route-plans. With map NRW, one iteration for a rush-hour of four hours

simulation time can be computed in one hour real-time. Therefore, even if convergence is slow (e.g.

20 iterations), results could be obtained within a day. Conventional systems which are at least one

order of magnitude slower would require at least a week.
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Figure 1: Left: Measured fundamental diagram. Data are from a Californian highway. Right: Simulated fundamental

diagram. Data are a combination of di�erent �-values.
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substructure graph

Figure 2: Substructure of an Intersection of Degree 4 | The left side depicts

the substructure of an intersection of degree four. All deceleration, transfer, and acceleration

lanes are explicitly coded. The intersection in question is AK J�uchen of Autobahn A44 and

A46. The right side shows the corresponding graph representation which MicroSim uses as

input format.
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